系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2867-2876.doi: 10.16182/j.issn1004731x.joss.24-0686

• 论文 • 上一篇    

基于时空特性的齿轮箱故障预警系统孪生建模

田元兴, 韩则胤, 王宁, 苏宝定, 向未林   

  1. 中广核风电有限公司,北京 100070
  • 收稿日期:2024-06-27 修回日期:2024-10-11 出版日期:2025-11-18 发布日期:2025-11-27
  • 第一作者简介:田元兴(1988-),男,工程师,硕士,研究方向为新能源发电设备预警与诊断建模、风电机组控制策略研究与主控系统开发。
  • 基金资助:
    基于大数据和人工智能的新能源关键设备预测性健康管理系统应用开发(003-AYE-F120-2020-002)

Twin Modeling of Gearbox Fault Early Warning System Based on Spatio-Temporal Characteristics

Tian Yuanxing, Han Zeyin, Wang Ning, Su Baoding, Xiang Weilin   

  1. China Guangdong Nuclear Wind Power Co. , Ltd. , Beijing 100070, China
  • Received:2024-06-27 Revised:2024-10-11 Online:2025-11-18 Published:2025-11-27

摘要:

针对风电齿轮箱在复杂故障下不能有效采集振动信号,导致风电齿轮箱故障预警精度下降的问题,研究基于时空特性的齿轮箱故障预警系统孪生建模。通过信息采集子系统和光纤传感技术,实时采集风电齿轮箱运行时的时序和空间位置数据,得到时空特性数据;利用孪生空间,将得到的齿轮箱时空特性数据传输至虚拟空间;利用绘制渐开线齿廓线建模方法,结合几何模型、物理模型与行为模型,得到风电齿轮箱的孪生体模型;获取仿真数据,利用概率神经网络,得到复合故障预警结果。实验证明:该系统可有效采集风电齿轮箱的时空特性数据,并建立齿轮箱孪生体模型;复合故障状态下,均方误差小于0.05 m/s²,相关系数大于0.95,表明系统具有高数据采集精度和强相关性。能够有效完成齿轮箱复合故障预警,显著提升故障预警的精准度和效率。

关键词: 时空特性, 概率神经网络, 风电齿轮箱, 复合故障, 预警系统

Abstract:

The wind turbine gearbox cannot effectively collect vibration signals under complex faults, which leads to the decline of fault early warning accuracy of wind turbine gearbox. To address this issue, this study investigated the twin modeling of gearbox fault early warning system based on spatio-temporal characteristics. Through the information acquisition subsystem and optical fiber sensing technology, the time sequence and spatial position data of the wind turbine gearbox during operation were collected in real time to obtain spatio-temporal characteristic data. By using the twin space, the collected spatio-temporal characteristic data of the gearbox were transmitted to the virtual space. By adopting the involute tooth-profile drawing method, a wind turbine gearbox twin model was established by integrating geometric, physical, and behavioral models. Simulation data were acquired, and the composite fault early warning results were obtained via probabilistic neural networks. Experiments show that the system can effectively collect the spatio-temporal characteristic data of the wind turbine gearbox and establish the twin model of gearbox. Under the composite fault condition, the mean square error is less than 0.05 m/s2, and the correlation coefficient is greater than 0.95, indicating that the system has high data acquisition accuracy and strong correlation. It can effectively complete the composite fault early warning of gearbox and significantly improve the accuracy and efficiency of fault early warning.

Key words: spatio-temporal characteristic, probabilistic neural network, wind turbine gearbox, composite fault, early warning system

中图分类号: