1 |
黄林, 龚立, 姜伟, 等. 基于多源信息融合与HMM的剩余寿命预测[J]. 系统工程与电子技术, 2022, 44(5): 1747-1756.
|
|
Huang Lin, Gong Li, Jiang Wei, et al. Remaining Useful Life Prediction Based on Multi-source Information Fusion and HMM[J]. Systems Engineering and Electronics, 2022, 44(5): 1747-1756.
|
2 |
Wu R T, Jahanshahi M R. Data Fusion Approaches for Structural Health Monitoring and System Identification: Past, Present, and Future[J]. Structural Health Monitoring, 2020, 19(2): 552-586.
|
3 |
Huang Lin, Gong Li, Chen Yutao, et al. Trajectory Similarity Matching and Remaining Useful Life Prediction Based on Dynamic Time Warping[J]. Mathematical Problems in Engineering, 2022, 2022: 5344461.
|
4 |
Sammaknejad N, Zhao Yujia, Huang Biao. A Review of the Expectation Maximization Algorithm in Data-driven Process Identification[J]. Journal of Process Control, 2019, 73: 123-136.
|
5 |
Zhang Weiting, Yang Dong, Wang Hongchao. Data-driven Methods for Predictive Maintenance of Industrial Equipment: A Survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227.
|
6 |
张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4): 165-171.
|
|
Zhang Anan, Huang Jinying, Ji Shuwei, et al. Bearing Fault Pattern Recognition Based on Image Classification with CNN[J]. Journal of Vibration and Shock, 2020, 39(4): 165-171.
|
7 |
姚鹏川. 基于数据驱动的核动力装置状态监测方法研究[J]. 核动力工程, 2020, 41(增1): 135-139.
|
|
Yao Pengchuan. Research on Condition Monitoring Method for Nuclear Power Plants Based on Data Drive[J]. Nuclear Power Engineering, 2020, 41(S1): 135-139.
|
8 |
Wang Yu, Liu Miao, Yang Jie, et al. Data-driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4074-4077.
|
9 |
Roy Saurav, Ray Ratula, Satya Ranjan Dash, et al. Plant Disease Detection Using Machine Learning Tools with an Overview on Dimensionality Reduction[M]//Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, et al. Data Analytics in Bioinformatics: A Machine Learning Perspective. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2021: 109-144.
|
10 |
Zebari Rizgar R, Adnan Mohsin Abdulazeez, Diyar Qader Zeebaree, et al. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction[J]. Journal of Applied Science and Technology Trends, 2020, 1(2): 56-70.
|
11 |
Laurens van der Maaten, Hinton G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
|
12 |
尚前明, 黄兴烨, 沈栋, 等. 基于改进t-SNE和RBFNN的柴油机故障诊断[J]. 船舶工程, 2023, 45(1): 91-97.
|
|
Shang Qianming, Huang Xingye, Shen Dong, et al. Fault Diagnosis of Diesel Engine Based on Improved t-SNE and RBFNN[J]. Ship Engineering, 2023, 45(1): 91-97.
|
13 |
王金刚, 徐航, 刘海, 等. 基于t-SNE与模糊聚类的电动汽车行驶工况构建[J]. 重庆交通大学学报(自然科学版), 2022, 41(6): 126-132, 146.
|
|
Wang Jingang, Xu Hang, Liu Hai, et al. Driving Construction of Electric Vehicles Based on t-SNE and Fuzzy Clustering[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(6): 126-132, 146.
|
14 |
Song Weijing, Wang Lizhe, Liu Peng, et al. Improved t-SNE Based Manifold Dimensional Reduction for Remote Sensing Data Processing[J]. Multimedia Tools and Applications, 2019, 78(4): 4311-4326.
|
15 |
Pouyet E, Rohani N, Katsaggelos A K, et al. Innovative Data Reduction and Visualization Strategy for Hyperspectral Imaging Datasets Using t-SNE Approach[J]. Pure and Applied Chemistry, 2018, 90(3): 493-506.
|
16 |
华强. 基于t-SNE的虚拟样本生成技术研究及建模应用[D]. 北京: 北京化工大学, 2022.
|
|
Hua Qiang. Research of Virtual Sample Generation Technology Based on t-SNE and Modeling Application[D]. Beijing: Beijing University of Chemical Technology, 2022.
|
17 |
Abdi Hervé, Williams L J. Principal Component Analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459.
|
18 |
Huang Hong, Shi Guangyao, He Haibo, et al. Dimensionality Reduction of Hyperspectral Imagery Based on Spatial-spectral Manifold Learning[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2604-2616.
|
19 |
Aremu O O, Hyland-Wood D, McAree P R. A Machine Learning Approach to Circumventing the Curse of Dimensionality in Discontinuous Time Series Machine Data[J]. Reliability Engineering & System Safety, 2020, 195: 106706.
|
20 |
Wen Tao, Duan Shuyu, Jiang Wen. Node Similarity Measuring in Complex Networks with Relative Entropy[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104867.
|
21 |
Saxena A, Goebel K, Simon D, et al. Damage Propagation Modeling for Aircraft Engine Run-to-failure Simulation[C]//2008 International Conference on Prognostics and Health Management. Piscataway, NJ, USA: IEEE, 2008: 1-9.
|
22 |
Rosenberg A, Hirschberg J. V-measure: A Conditional Entropy-based External Cluster Evaluation Measure[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Stroudsburg, PA, USA: ACL, 2007: 410-420.
|
23 |
McDaid A F, Greene D, Hurley N. Normalized Mutual Information to Evaluate Overlapping Community Finding Algorithms [EB/OL]. [2023-04-23]. .
|
24 |
Rousseeuw Peter J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
|