系统仿真学报 ›› 2023, Vol. 35 ›› Issue (4): 797-808.doi: 10.16182/j.issn1004731x.joss.21-1333

• 论文 • 上一篇    

基于夹角几何的I-niceMO增强算法

何一帆1(), 何玉林1,2(), 蔡湧达1, 黄哲学1,2   

  1. 1.深圳大学 计算机与软件学院,广东 深圳 518060
    2.深圳大学 大数据系统计算技术国家工程实验室,广东 深圳 518000
  • 收稿日期:2021-12-23 修回日期:2022-02-09 出版日期:2023-04-29 发布日期:2023-04-12
  • 通讯作者: 何玉林 E-mail:396981852@qq.com;yulinhe@gml.ac.cn
  • 作者简介:何一帆(1997-),男,硕士生,研究方向为数据挖掘和机器学习算法及其应用。E-mail:396981852@qq.com
  • 基金资助:
    国家自然科学基金面上项目(61972261);深圳市基础研究项目(JCY20210324093609026)

I-niceMO Enhanced Algorithm Based on Intersection Angel Geometry

Yifan He1(), Yulin He1,2(), Yongda Cai1, Zhexue Huang1,2   

  1. 1.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
    2.National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518000, China
  • Received:2021-12-23 Revised:2022-02-09 Online:2023-04-29 Published:2023-04-12
  • Contact: Yulin He E-mail:396981852@qq.com;yulinhe@gml.ac.cn

摘要:

针对I-niceMO算法在候选聚类中心合并时中心数目难以确定和中心点识别不准确的问题,提出了基于夹角几何的I-niceMO增强(I-niceMOEn)算法。利用观测点与数据点之间的距离和角度分布情况找出数据中尽可能多的候选聚类中心,以避免多类别数据聚类中出现的类别丢失的情况;利用谱聚类算法对候选聚类中心进行聚类,根据拉普拉斯矩阵特征值的大小自动地对候选聚类中心进行合并;根据合并后的聚类中心的数量确定最终的数据聚类类别数。I-niceMOEn算法实现了对数据类别数的自动确定,并且在聚类过程中不需要人为设置参数。实验结果表明:I-niceMOEn算法在收敛的同时能够获得优于传统自动聚类算法和I-niceMO算法的类中心确定表现。

关键词: 自动聚类, I-nice聚类, 谱聚类, 无监督学习, 观测点机制

Abstract:

To exactly determine the number of cluster centers and correctly identify the candidate cluster centers, an I-niceMO enhanced(I-niceMOEn) algorithm based on intersection angel geometry is proposed. As many distributions of intersection angles and distances as possible between observation points and data points are utilized to recognize the candidate cluster centers to avoid the neglection of cluster centers. The spectral clustering algorithm is used to automatically merge the candidate cluster centers according to the eigenvalues of Laplacian matrices. The number of final cluster centers is determined by the number of merged candidate cluster centers. The number of clusters can be automatically determined by I-niceMOEn algorithm and the manual parameter input for clustering is not needed. The experimental results show that I-niceMOEn algorithm is convergent and outperforms the traditional automatic clustering methods and I-niceMO algorithm.

Key words: automatic clustering, I-nice clustering, spectral clustering, unsupervised learning, observation point mechanism

中图分类号: