系统仿真学报 ›› 2023, Vol. 35 ›› Issue (11): 2476-2495.doi: 10.16182/j.issn1004731x.joss.22-0682
• 论文 • 上一篇
陈雪1(), 胡蓉1(
), 王辉2, 李作成1, 钱斌1, 李熠胥1
收稿日期:
2022-06-21
修回日期:
2022-09-26
出版日期:
2023-11-25
发布日期:
2023-11-24
通讯作者:
胡蓉
E-mail:1182442949@qq.com;ronghu@vip.163.com
第一作者简介:
陈雪(1998-),女,硕士生,研究方向为复杂系统智能优化。E-mail: 1182442949@qq.com
基金资助:
Chen Xue1(), Hu Rong1(
), Wang Hui2, Li Zuocheng1, Qian Bin1, Li Yixu1
Received:
2022-06-21
Revised:
2022-09-26
Online:
2023-11-25
Published:
2023-11-24
Contact:
Hu Rong
E-mail:1182442949@qq.com;ronghu@vip.163.com
摘要:
针对考虑同时取送货的绿色两级车辆路径问题,以最小化带碳排放成本的总运输成本为优化目标,提出一种结合聚类分解的学习型蚁群优化算法。针对两级问题相互耦合的特点,采用基于距离的聚类算法将原问题分解为一组子问题,提出一种学习型蚁群优化算法对各子问题进行求解,进而获得原问题的解。提出一种考虑问题结构特征的三维概率矩阵作为信息素矩阵,用于学习优质解的优良特征信息,以提高算法的全局搜索能力;提出一种考虑算法行为特征的局部搜索策略,用于学习所设计的六种邻域算子的搜索信息,以提高算法的局部搜索能力。通过仿真实验和算法比较,验证了所提算法的有效性。
中图分类号:
陈雪,胡蓉,王辉等 . 学习型蚁群算法求解一类复杂两级车辆路径问题[J]. 系统仿真学报, 2023, 35(11): 2476-2495.
Chen Xue,Hu Rong,Wang Hui,et al . Learning-based Ant Colony Optimization Algorithm for Solving a Kind of Complex 2-Echelon Vehicle Routing Problem[J]. Journal of System Simulation, 2023, 35(11): 2476-2495.
表6
LACO与ACO、ACO1、ACO2的对比结果(2Ns)
ACO | ACO1 | ACO2 | LACO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | |
30_3 | 672.5 | 563.5 | 610.5 | 651.4 | 556.2 | 607.6 | 514.9 | 487.4 | 495.1 | 518.3 | 487.4 | 494.5 |
40_3 | 893.3 | 800.8 | 839.9 | 916.7 | 797.7 | 844.6 | 648.8 | 553.9 | 592.9 | 628.7 | 554.2 | 586.9 |
50_3 | 1 069.8 | 987.9 | 1 021.6 | 1 133.9 | 1 001.1 | 1 072.0 | 764.0 | 687.5 | 736.9 | 768.9 | 690.7 | 736.4 |
60_3 | 1 184.5 | 1 071.8 | 1 125.1 | 1 314.7 | 1 178.1 | 1 237.4 | 737.5 | 676.8 | 704.3 | 755.7 | 680.9 | 711.9 |
70_3 | 1 439.1 | 1 270.4 | 1 371.9 | 1 596.1 | 1 442.3 | 1 529.7 | 913.4 | 814.3 | 871.5 | 863.0 | 806.1 | 829.4 |
80_3 | 1 637.8 | 1 504.2 | 1 566.3 | 1 856.2 | 1 719.7 | 1 789.6 | 1 025.3 | 887.1 | 932.5 | 1 032.8 | 877.8 | 916.9 |
50_5 | 1 006.4 | 922.6 | 969.4 | 1 020.2 | 918.8 | 961.9 | 845.3 | 731.9 | 776.3 | 843.6 | 735.4 | 779.6 |
60_5 | 1 086.9 | 999.9 | 1 047.8 | 1 107.0 | 1 027.7 | 1 068.8 | 855.0 | 767.1 | 794.6 | 861.0 | 767.8 | 811.4 |
70_5 | 1 261.6 | 1 111.7 | 115.8 | 1 293.1 | 1 158.7 | 1 228.8 | 939.1 | 851.3 | 892.6 | 941.3 | 843.7 | 873.9 |
80_5 | 1 412.9 | 1 280.3 | 1 328.5 | 1 536.5 | 1 386.6 | 1 444.0 | 991.4 | 886.3 | 935.0 | 955.1 | 872.3 | 910.8 |
90_5 | 1 598.2 | 1 433.9 | 1 509.3 | 1 679.8 | 1 539.6 | 1 624.5 | 1 067.2 | 969.2 | 1 022.2 | 1 028.9 | 929.5 | 966.7 |
100_5 | 1 723.8 | 1 560.9 | 1 622.5 | 1 897.0 | 1 718.9 | 1 797.6 | 1 134.1 | 969.7 | 1 073.9 | 1 096.4 | 965.7 | 1 042.6 |
60_8 | 1 081.0 | 921.6 | 1 030.7 | 1 483.9 | 1 275.0 | 1 397.4 | 895.4 | 771.9 | 824.9 | 901.7 | 781.8 | 847.1 |
80_8 | 1 407.2 | 1 274.8 | 1 325.4 | 1 823.7 | 1 581.1 | 1 689.2 | 1 105.1 | 928.6 | 1 006.3 | 1 094.3 | 931.4 | 987.1 |
100_8 | 1 661.7 | 1 458.0 | 1 564.1 | 2 036.3 | 1 843.6 | 1 918.3 | 1 267.3 | 1 129.1 | 1 182.8 | 1 250.2 | 1 091.0 | 1 159.2 |
120_8 | 1 842.9 | 1 684.9 | 1 759.7 | 2 460.4 | 2 214.4 | 2 324.0 | 1 469.3 | 1 187.1 | 1 341.3 | 1 348.9 | 1 168.5 | 1 243.3 |
140_8 | 2 168.1 | 1 940.0 | 2 067.7 | 2 713.7 | 2 468.4 | 2 599.6 | 1 551.9 | 1 285.3 | 1 437.1 | 1 517.7 | 1 279.6 | 1 404.0 |
160_8 | 2 423.9 | 2 214.6 | 2 331.5 | 3 115.1 | 2 896.7 | 3 011.1 | 1 693.1 | 1 459.3 | 1 568.3 | 1 661.7 | 1 452.9 | 1 544.4 |
100_10 | 1 487.8 | 1 270.3 | 1 386.6 | 1 510.3 | 1 332.7 | 1 409.1 | 1 286.3 | 1 092.8 | 1 181.6 | 1 293.0 | 1 080.8 | 1 186.6 |
120_10 | 1 607.1 | 1 424.5 | 1 522.1 | 1 752.9 | 1 504.8 | 1 600.1 | 1 420.3 | 1 195.7 | 1 271.6 | 1 373.6 | 1 181.0 | 1 264.3 |
140_10 | 1 888.1 | 1 659.8 | 1 783.1 | 2 029.6 | 1 748.8 | 1 896.9 | 1 575.2 | 1 274.3 | 1 399.0 | 1 549.4 | 1 265.3 | 1 392.6 |
160_10 | 2 085.6 | 1 783.4 | 1 978.6 | 2 249.9 | 2 042.6 | 2 127.5 | 1 701.3 | 1 383.1 | 1 502.8 | 1 667.8 | 1 368.1 | 1 494.8 |
180_10 | 2 279.4 | 2 025.9 | 2 166.2 | 2 543.0 | 2 246.1 | 2 396.3 | 1 785.9 | 1 439.2 | 1 579.3 | 1 666.6 | 1 409.1 | 1 568.4 |
200_10 | 2 621.5 | 2 356.1 | 2 499.6 | 2 877.4 | 2 556.5 | 2 703.5 | 1 966.3 | 1 603.5 | 1 803.9 | 1 945.0 | 1 598.5 | 1 779.3 |
表7
LACO与VND_LS和CW_LS的对比结果(2Ns)
VND_LS | CW_LS | LACO | |||||||
---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | |
30_3 | 525.5 | 509.6 | 513.4 | 499.4 | 483.6 | 489.2 | 518.3 | 487.4 | 494.5 |
40_3 | 679.5 | 631.1 | 653.0 | 654.9 | 596.9 | 624.5 | 628.7 | 554.2 | 586.9 |
50_3 | 788.1 | 718.2 | 753.3 | 763.1 | 658.7 | 693.4 | 768.9 | 690.7 | 736.4 |
60_3 | 871.4 | 758.4 | 817.6 | 868.7 | 707.9 | 795.7 | 755.7 | 680.9 | 711.9 |
70_3 | 994.0 | 826.7 | 911.8 | 905.4 | 778.4 | 859.9 | 863.0 | 806.1 | 829.4 |
80_3 | 1 093.9 | 1 013.5 | 1 037.1 | 1 032.3 | 897.0 | 950.8 | 1 032.8 | 877.8 | 916.9 |
50_5 | 820.9 | 711.3 | 750.8 | 773.9 | 717.9 | 744.0 | 843.6 | 735.4 | 779.6 |
60_5 | 887.4 | 793.7 | 827.1 | 895.4 | 804.0 | 838.0 | 861.0 | 767.8 | 811.4 |
70_5 | 966.0 | 824.9 | 894.9 | 961.7 | 838.5 | 877.0 | 941.3 | 843.7 | 873.9 |
80_5 | 1 058.3 | 946.4 | 990.8 | 1 051.2 | 952.2 | 991.5 | 955.1 | 872.3 | 910.8 |
90_5 | 1 218.5 | 1 052.6 | 1 126.1 | 1 226.8 | 1 063.1 | 1 138.1 | 1 028.9 | 929.5 | 966.7 |
100_5 | 1 287.0 | 1 145.9 | 1 221.1 | 1 241.7 | 1 109.9 | 1 186.6 | 1 096.4 | 965.7 | 1 042.6 |
60_8 | 1 016.2 | 780.0 | 912.3 | 967.6 | 815.4 | 895.1 | 901.7 | 781.8 | 847.1 |
80_8 | 1 151.5 | 978.2 | 1 072.0 | 1 167.6 | 1 037.7 | 1 120.2 | 1 094.3 | 931.4 | 987.1 |
100_8 | 1 392.5 | 1 141.0 | 1 243.3 | 1 454.4 | 1 179.6 | 1 314.5 | 1 250.2 | 1 091.0 | 1 159.2 |
120_8 | 1 500.7 | 1 296.6 | 1 382.5 | 1 442.3 | 1 270.1 | 1 359.2 | 1 348.9 | 1 168.5 | 1 243.3 |
140_8 | 1 646.0 | 1 405.0 | 1 527.4 | 1 696.6 | 1 479.4 | 1 582.1 | 1 517.7 | 1 279.6 | 1 404.0 |
160_8 | 1 766.9 | 1 537.9 | 1 688.9 | 1 824.3 | 1 637.3 | 1 744.5 | 1 661.7 | 1 452.9 | 1 544.4 |
100_10 | 1 394.6 | 1 112.6 | 1 260.3 | 1 377.5 | 1 107.0 | 1 269.9 | 1 293.0 | 1 080.8 | 1 186.6 |
120_10 | 1 455.3 | 1 228.7 | 1 369.4 | 1 506.1 | 1 252.9 | 1 369.5 | 1 373.6 | 1 181.0 | 1 264.3 |
140_10 | 1 733.4 | 1 394.1 | 1 561.4 | 1 732.2 | 1 448.7 | 1 525.8 | 1 549.4 | 1 265.3 | 1 392.6 |
160_10 | 1 751.3 | 1 481.1 | 1 651.4 | 1 792.6 | 1 537.1 | 1 670.1 | 1 667.8 | 1 368.1 | 1 494.8 |
180_10 | 2 027.6 | 1 616.6 | 1 781.4 | 1 974.7 | 1 777.8 | 1 869.6 | 1 666.6 | 1 409.1 | 1 568.4 |
200_10 | 2 304.1 | 1 900.3 | 2 179.3 | 2 096.1 | 1 818.4 | 1 976.9 | 1 945.0 | 1 598.5 | 1 779.3 |
1 | Dantzig G B, Ramser J H. The Truck Dispatching Problem[J]. Management Science, 1959, 6(1): 80-91. |
2 | Perboli G, Tadei R, Vigo D. The Two-echelon Capacitated Vehicle Routing Problem: Models and Math-based Heuristics[J]. Transportation Science, 2011, 45(3): 364-380. |
3 | Wang Meihua, Tian Xuhong, Chang Shan, et al. Hybrid Ant Colony Optimization Algorithm for Two Echelon Vehicle Routing Problem[J]. Procedia Engineering, 2011, 15: 3361-3365. |
4 | Breunig U, Schmid V, Hartl R F, et al. A Large Neighbourhood Based Heuristic for Two-echelon Routing Problems[J]. Computers & Operations Research, 2016, 76: 208-225. |
5 | Crainic T G, Perboli G, Mancini S, et al. Two-echelon Vehicle Routing Problem: A Satellite Location Analysis[J]. Procedia - Social and Behavioral Sciences, 2010, 2(3): 5944-5955. |
6 | Enthoven D L J U, Jargalsaikhan B, Roodbergen K J, et al. The Two-echelon Vehicle Routing Problem with Covering Options: City Logistics with Cargo Bikes and Parcel Lockers[J]. Computers & Operations Research, 2020, 118: 104919. |
7 | Marques G, Sadykov R, Deschamps J C, et al. An Improved Branch-cut-and-price Algorithm for the Two-echelon Capacitated Vehicle Routing Problem[J]. Computers & Operations Research, 2020, 114: 104833. |
8 | He Pengfei, Li Jing. The Two-echelon Multi-trip Vehicle Routing Problem with Dynamic Satellites for Crop Harvesting and Transportation[J]. Applied Soft Computing, 2019, 77: 387-398. |
9 | Li Hongqi, Wang Haotian, Chen Jun, et al. Two-echelon Vehicle Routing Problem with Time Windows and Mobile Satellites[J]. Transportation Research Part B: Methodological, 2020, 138: 179-201. |
10 | Redi A A N P, Jewpanya P, Kurniawan A C, et al. A Simulated Annealing Algorithm for Solving Two-echelon Vehicle Routing Problem with Locker Facilities[J]. Algorithms, 2020, 13(9): 218. |
11 | Min H. The Multiple Vehicle Routing Problem with Simultaneous Delivery and Pick-up Points[J]. Transportation Research Part A: General, 1989, 23(5): 377-386. |
12 | 闫军, 常乐, 王璐璐, 等. 带时间窗的同时取送货车辆路径问题求解算法[J]. 工业工程, 2021, 24(5): 72-76. |
Yan Jun, Chang Le, Wang Lulu, et al. A Solution Algorithm for the Problem of Taking Delivery Vehicle Path at the Same Time with Time Window[J]. Industrial Engineering Journal, 2021, 24(5): 72-76. | |
13 | 张烜荧, 胡蓉, 钱斌. 超启发式分布估计算法求解带软时间窗的同时取送货车辆路径问题[J]. 控制理论与应用, 2021, 38(9): 1427-1441. |
Zhang Xuanying, Hu Rong, Qian Bin. Hyper-heuristic Estimation of Distribution Algorithm for Solving Vehicle Routing Problem with Simultaneous Pickup and Delivery and Soft Time Windows[J]. Control Theory & Applications, 2021, 38(9): 1427-1441. | |
14 | 李博威, 户佐安, 贾叶子, 等. 带软时间窗的同时取送货车辆路径问题研究[J]. 工业工程, 2020, 23(5): 75-81. |
Li Bowei, Hu Zuoan, Jia Yezi, et al. A Research on Vehicle Routing Problem with Simultaneous Pick-up and Delivery and Soft Time Windows[J]. Industrial Engineering Journal, 2020, 23(5): 75-81. | |
15 | 张景玲, 刘金龙, 赵燕伟, 等. 时间依赖型同时取送货VRP及超启发式算法[J]. 计算机集成制造系统, 2020, 26(7): 1905-1917. |
Zhang Jingling, Liu Jinlong, Zhao Yanwei, et al. Hyper-heuristic for Time-dependent VRP with Simultaneous Delivery and Pickup[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1905-1917. | |
16 | 赵志学, 李夏苗, 周鲜成. 考虑拥堵区域的多车型绿色车辆路径问题优化[J]. 计算机应用, 2020, 40(3): 883-890. |
Zhao Zhixue, Li Xiamiao, Zhou Xiancheng. Green Vehicle Routing Problem Optimization for Multi-type Vehicles Considering Traffic Congestion Areas[J]. Journal of Computer Applications, 2020, 40(3): 883-890. | |
17 | 马艳芳, 应斌, 康凯, 等. 模糊需求下绿色同时取送货问题与算法研究[J]. 计算机工程与应用, 2020, 56(16): 248-257. |
Ma Yanfang, Ying Bin, Kang Kai, et al. Algorithms for Green Simultaneous Pickup and Delivery Problem with Fuzzy Demand[J]. Computer Engineering and Applications, 2020, 56(16): 248-257. | |
18 | Utama D M, Fitria T A, Garside A K. Artificial Bee Colony Algorithm for Solving Green Vehicle Routing Problems with Time Windows[J]. Journal of Physics: Conference Series, 2021, 1933(1): 012043. |
19 | Sadati M E H, Çatay Bülent. A Hybrid Variable Neighborhood Search Approach for the Multi-depot Green Vehicle Routing Problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102293. |
20 | 珠兰, 马潇, 刘卓凡. 时间依赖型绿色车辆路径问题研究[J]. 交通运输系统工程与信息, 2021, 21(6): 187-194. |
Zhu Lan, Ma Xiao, Liu Zhuofan. Time-dependent Green Vehicle Routing Problem[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 187-194. | |
21 | 李正雯, 胡蓉, 钱斌, 等. 学习型离散排超联赛算法求解带时间窗的绿色多车型两级车辆路径问题[J]. 控制理论与应用, 2023, 40(3): 549-557. |
Li Zhengwen, Hu Rong, Qian Bin, et al. A Learning Discrete Volleyball Premier League Algorithm for Solving Green Two-echelon Heterogeneous-fleet Vehicle Routing Problem with Time Windows[J]. Control Theory & Applications, 2023, 40(3): 549-557. | |
22 | Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41. |
23 | 陈希琼, 胡大伟, 杨倩倩, 等. 多目标同时取送货车辆路径问题的改进蚁群算法[J]. 控制理论与应用, 2018, 35(9): 1347-1356. |
Chen Xiqiong, Hu Dawei, Yang Qianqian, et al. An Improved Ant Colony Algorithm for Multi-objective Vehicle Routing Problem with Simultaneous Pickup and Delivery[J]. Control Theory & Applications, 2018, 35(9): 1347-1356. | |
24 | 李奇才, 舒远仲, 洪宇轩. 一种蚁群算法与自适应机制的路径规划算法优化[J]. 机械科学与技术, 2022, 41(7): 1095-1101. |
Li Qicai, Shu Yuanzhong, Hong Yuxuan. Optimizing Path Planning Algorithm Based on Ant Colony Algorithm and Adaptive Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1095-1101. | |
25 | Li Yongbo, Soleimani H, Zohal M. An Improved Ant Colony Optimization Algorithm for the Multi-depot Green Vehicle Routing Problem with Multiple Objectives[J]. Journal of Cleaner Production, 2019, 227: 1161-1172. |
26 | Brito J, Martínez F J, Moreno J A, et al. An ACO Hybrid Metaheuristic for Close-open Vehicle Routing Problems with Time Windows and Fuzzy Constraints[J]. Applied Soft Computing, 2015, 32: 154-163. |
27 | 胡蓉, 陈文博, 钱斌, 等. 学习型蚁群算法求解绿色多车场车辆路径问题[J]. 系统仿真学报, 2021, 33(9): 2095-2108. |
Hu Rong, Chen Wenbo, Qian Bin, et al. Learning Ant Colony Algorithm for Green Multi-depot Vehicle Routing Problem[J]. Journal of System Simulation, 2021, 33(9): 2095-2108. | |
28 | Yang Hongming, Yang Songping, Xu Yan, et al. Electric Vehicle Route Optimization Considering Time-of-use Electricity Price by Learnable Partheno-genetic Algorithm[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 657-666. |
29 | Jabir E, Panicker V V, Sridharan R. Design and Development of a Hybrid Ant Colony-variable Neighbourhood Search Algorithm for a Multi-depot Green Vehicle Routing Problem[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 422-457. |
30 | Ji Jinchao, Pang Wei, Zhou Chunguang, et al. A Fuzzy K-prototype Clustering Algorithm for Mixed Numeric and Categorical Data[J]. Knowledge-Based Systems, 2012, 30: 129-135. |
31 | Mladenović N, Hansen P. Variable Neighborhood Search[J]. Computers & Operations Research, 1997, 24(11): 1097-1100. |
32 | Belgin O, Karaoglan I, Altiparmak F. Two-echelon Vehicle Routing Problem with Simultaneous Pickup and Delivery: Mathematical Model and Heuristic Approach[J]. Computers & Industrial Engineering, 2018, 115: 1-16. |
33 | Li Hongqi, Zhang Lu, Tan Lü, et al. The Two-echelon Time-constrained Vehicle Routing Problem in Linehaul-delivery Systems[J]. Transportation Research Part B: Methodological, 2016, 94: 169-188. |
[1] | 郭润夏, 王一府. 以维修间隔利用率最优为目标的飞机派遣方法[J]. 系统仿真学报, 2023, 35(9): 1985-1999. |
[2] | 孙日明, 郭虎, 邹丽, 毛佳奇, 王胜法. 融合决策下的数字序列跌倒检测方法[J]. 系统仿真学报, 2023, 35(9): 2045-2053. |
[3] | 张凤全, 曹铎, 马晓寒, 陈柏君, 张江霄. 一种面向戏曲妆容细节生成的风格迁移网络[J]. 系统仿真学报, 2023, 35(9): 2064-2076. |
[4] | 林俊强, 王红军, 邹湘军, 张坡, 李承恩, 周益鹏, 姚书杰. 基于DPPO的移动采摘机器人避障路径规划及仿真[J]. 系统仿真学报, 2023, 35(8): 1692-1704. |
[5] | 刘家义, 王刚, 付强, 郭相科, 王思远. 基于分配策略优化算法的智能防空任务分配[J]. 系统仿真学报, 2023, 35(8): 1705-1716. |
[6] | 杨来义, 毕敬, 苑海涛. 基于SAC算法的移动机器人智能路径规划[J]. 系统仿真学报, 2023, 35(8): 1726-1736. |
[7] | 丁飞, 沙宇晨, 洪莹, 蒯晓, 张登银. 智能网联汽车计算卸载与边缘缓存联合优化策略[J]. 系统仿真学报, 2023, 35(6): 1203-1214. |
[8] | 戴宇轩, 崔承刚. 基于深度强化学习的Boost变换器控制策略[J]. 系统仿真学报, 2023, 35(5): 1109-1119. |
[9] | 徐浩添, 秦龙, 曾俊杰, 胡越, 张琪. 基于深度强化学习的对手建模方法研究综述[J]. 系统仿真学报, 2023, 35(4): 671-694. |
[10] | 陈威, 王艳, 纪志成. 离散制造系统能耗动态建模与在线预测[J]. 系统仿真学报, 2023, 35(4): 760-772. |
[11] | 石鼎, 燕雪峰, 宫丽娜, 张静宣, 关东海, 魏明强. 强化学习驱动的海战场多智能体协同作战仿真算法[J]. 系统仿真学报, 2023, 35(4): 786-796. |
[12] | 何一帆, 何玉林, 蔡湧达, 黄哲学. 基于夹角几何的I-niceMO增强算法[J]. 系统仿真学报, 2023, 35(4): 797-808. |
[13] | 李志强, 李元龙, 殷来祥, 马向平. 智能无人蜂群作战系统适应性进化模型仿真研究[J]. 系统仿真学报, 2023, 35(4): 878-886. |
[14] | . 学习流体仿真中的高效长时序运动预测[J]. 系统仿真学报, 2023, 35(3): 435-453. |
[15] | 秦传东, 李宝胜, 韩宝乐. 微阵列高维特征选择的多策略混合人工蜂群算法[J]. 系统仿真学报, 2023, 35(3): 515-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||