系统仿真学报 ›› 2018, Vol. 30 ›› Issue (2): 636-646.doi: 10.16182/j.issn1004731x.joss.201802033
高聪, 吴定会, 潘庭龙, 纪志成
收稿日期:2016-01-29
出版日期:2018-02-08
发布日期:2019-01-02
第一作者简介:高聪(1993-),男,山西太原,硕士,研究方向为微电网经济优化;吴定会(1970-),男,安徽合肥,博士,副教授,研究方向为微网经济优化和物联网技术;潘庭龙(1976-),男,江苏建湖,博士,教授,研究方向为微网经济优化。
基金资助:Gao Cong, Wu Dinghui, Pan Tinglong, Ji Zhicheng
Received:2016-01-29
Online:2018-02-08
Published:2019-01-02
摘要: 微电网经济运行优化问题的求解常常伴随着多约束、非连续和多发电机组等问题的制约。针对该问题,提出一种免疫粒子群算法,算法将人工免疫系统引入到粒子群算法中,既能保证算法本身的收敛性,也能在免疫环节中使粒子较为均匀地分布于解空间内,因而保证了算法的全局寻优能力和鲁棒性。将该算法分别用于求解微电网的孤岛、并网两种运行两种模型实例,并与其他三种算法进行比较,实验结果表明该算法可以有效求解微电网经济优化问题。
中图分类号:
高聪,吴定会,潘庭龙等 . 基于免疫粒子群算法的微电网经济运行优化[J]. 系统仿真学报, 2018, 30(2): 636-646.
Gao Cong,Wu Dinghui,Pan Tinglong,et al . Optimal Economic Dispatch of Microgrid Based on Immune Particle Swarm Optimization Algorithm[J]. Journal of System Simulation, 2018, 30(2): 636-646.
| [1] | Huang D Z, Gong R X, Gong S.Constrained multi- objective optimization for microgrid based on non- dominated immune algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering (S1931-4973), 2015, 10(4): 376-382. |
| [2] | Bhuiyan F A, Yazdani A, Primak S L.Optimal sizing approach for islanded microgrids[J]. Renewable Power Generation, IET (S1752-1416), 2015, 2(9): 166-175. |
| [3] | Jayabarathi T, Jayaprakash K, Jeyakumar D N, et al.Evolutionary programming techniques for different kinds of economic dispatch problems[J]. Electric Power Systems Research (S0378-7796), 2005, 73(2): 169-176. |
| [4] | Dubey H M, Pandit M, Panigrahi B K.A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems[J]. Cognitive Computation (S1866-9956), 2015, 5(7): 594-608. |
| [5] | Akorede M F, Hizam H, Aris I, et al.Ab Kadir. Effective method for optimal allocation of distributed generation units in meshed electric power systems[J]. Generation, Transmission and Distribution, IET (S1751- 8687), 2010, 5(2): 276-287. |
| [6] | Lin W M, Cheng F S, Tsay M T.An improved tabu search for economic dispatch with multiple minima[J]. IEEE Trans. on Power Systems (S0885-8950), 2002, 17(1): 108-112. |
| [7] | Gu W, Wu Z, Rui B, et al.Modeling, planning and optimal energy management of combined cooling, heating, and power microgrid: a review[J]. International Journal of Electrical Power and Energy Systems (S0142-0615), 2014, 54: 26-37. |
| [8] | Wu H B, Liu X Y, Ding M.Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm[J]. Electrical Power and Energy Systems (S0124-0615), 2014, 63: 336-346. |
| [9] | Obara S, El-Sayed A G. Compound microgrid installation operation planning of a PEFC and photovoltaics with prediction of electricity production using GA and numerical weather information[J]. International Journal of Hydrogen Energy (S0360-3199), 2009, 19(34): 8213-8222. |
| [10] | Mahapatra P K, Ganguli S, Kumar A.Hybrid particle swarm optimization and artificial immune system algorithm for image enhancement[J]. Methodologies and Application (S1432-7643), 2015, 19(8): 2101-2109. |
| [11] | Kuo R J, Chen C M, Liao T W, et al.Hybrid of artificial immune system and particle swarm optimization-based support vector machine for Radio Frequency Identification- based positioning system[J]. Computers and Industrial Engineering (S0360-8352), 2013, 1(64): 333-341. |
| [12] | Mahapatra P K, Sethi S, Kumar A.Comparison of artificial immune system and particle swarm optimization techniques for error optimization of machine vision based tool movements[J]. Journal of the Institution of Engineers (S2250-0545), 2015, 4(96): 363-372. |
| [13] | Ouyang P R, Pano V.Comparative study of DE, PSO and GA for position domain PID controller tuning[J]. Algorithms (S1999-4893), 2015, 3(8): 697-711. |
| [14] | 孔飞, 吴定会. 一种改进的鸡群算法[J]. 江南大学学报(自然科学版), 2015, 14(6): 681-688.Kong F, Wu D H. An improved chicken swarm optimization algorithm[J]. Journal of Jiangnan University (Natural Science Edition), 2015, 14(6): 681-688. |
| [15] | 张明, 田娜, 纪志成. 基于适应值欧式距离比的均衡蜂群算法[J]. 系统仿真学报, 2015, 27(5): 980-989.Zhang M, Tian N, Ji Z C.Balanced bee colony algorithm based on fitness euclidean-distance ratio[J]. Journal of System Simulation, 2015, 27(5): 980-989. |
| [16] | 李旭芳, 王士同. 一种自适应粒子群算法[J]. 系统仿真学报, 2009, 21(5): 2582-2585.Li X F, Wang S T. Lanscape adaptive particle swarm optimizer[J]. Journal of System Simulation, 2009, 21(5): 2582-2585. |
| [17] | 彭晓波, 桂卫华, 黄志武, 等. GAPSO:一种高效的遗传粒子混合算法及其应用[J]. 系统仿真学报, 2008, 20(18): 5025-5031.Peng X B, Gui W H, Huang Z W, et al. GAPSO: Effective genetic particle swarm algorithm and its application[J]. Journal of System Simulation, 2008, 20(18): 5025-5031. |
| [18] | 田娜, 纪志成. 改进量子粒子群求解多目标柔性作业车间调度[J]. 系统仿真学报, 2015, 27(12): 2950-2957.Tian N, Ji Z C. Improved quantum-behaved particle swarm optimization for solving multi-objective flexible job-Shop scheduling problems[J]. Journal of System Simulation, 2015, 27(12): 2950-2957. |
| [19] | S Siva Sathya, M V Radhika.Convergence of nomadic genetic algorithm on benchmark mathematical functions[J]. Applied Soft Computing (S1568-4946), 2013, 5(13): 2759-2766. |
| [20] | F A Mohamed, H N Koivo.System modelling and online optimal management of microgrid using mesh adaptive direct search[J]. Electrical Power and Energy Systems (S0142-0615), 2010, 32(5): 398-407. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [8] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [9] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [10] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [11] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [12] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [13] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| [14] | 张志利, 刘瑾, 周召发, 梁哲, 张云昊. 基于ISCSO-BP神经网络模型的光纤陀螺温度补偿技术研究[J]. 系统仿真学报, 2025, 37(11): 2904-2917. |
| [15] | 陈际同, 周佳加, 吴迪, 江海龙. 基于TD3-RRT的特殊环境下USV路径规划算法研究[J]. 系统仿真学报, 2025, 37(11): 2888-2903. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||