系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2545-2556.doi: 10.16182/j.issn1004731x.joss.24-0487

• 论文 • 上一篇    

基于改进RRT-Connect与DWA融合的移动机器人路径规划

罗毅, 邓嘉   

  1. 华北电力大学 控制与计算机工程学院,北京 102206
  • 收稿日期:2024-05-07 修回日期:2024-05-28 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 邓嘉
  • 第一作者简介:罗毅(1969-),男,教授,博士,研究方向为机器人系统智能控制。
  • 基金资助:
    国家自然科学基金面上项目(52277216)

Path Planning for Mobile Robots Based on Improved RRT-Connect and DWA Fusion

Luo Yi, Deng Jia   

  1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2024-05-07 Revised:2024-05-28 Online:2025-10-20 Published:2025-10-21
  • Contact: Deng Jia

摘要:

为提高复杂环境中移动机器人动态路径规划效率和质量,提出了一种改进RRT-connect与DWA融合的路径规划算法。引入两棵扩展随机树交替扩展,设置动态限制采样区域,降低采样过程随机性并保证算法的概率完备性,采用目标偏向自适应步长策略,以增强随机树扩展过程的目标导向性;采用贪心策略裁剪路径冗余节点并对全局路径进行平滑处理,得到全局优化路径;利用DWA跟踪全局路径,对评价函数进行改进,引入路径跟踪评价函数并采用自适应权重策略,同时引入路径校正机制,去除无效局部目标点,避免回绕现象。仿真结果表明:相比改进前,所提算法在不同静态环境中的运行时间分别下降36.18%、68.61%和89.33%,路径长度缩短17.61%、17.48%和12.33%,在动态环境中运行时间下降31.46%,路径长度缩短9.21%,并始终保证了路径的安全性。

关键词: 移动机器人, 自适应, RRT-connect, 动态采样区域, DWA, 路径规划

Abstract:

To improve the efficiency and quality of dynamic path planning for mobile robots in complex environments, this paper proposed a path planning algorithm that combined an improved RRT-connect with the DWA. Two expanding random trees were introduced for alternating expansion, and a dynamically restricted sampling area was set to reduce the randomness of the sampling process while ensuring the probability completeness of the algorithm. Atarget bias adaptive step size strategywas employed to enhance the target orientation of the random tree expansion process. A greedy strategy was adopted to prune redundant nodes in the path and smooth the global path to obtain the globally optimized path. The DWA was employed to track the global path, while the evaluation function was improved by introducing a path tracking evaluation function with an adaptive weight strategy. At the same time, a path correction mechanism was introduced to remove invalid local target points and avoid the phenomenon of backtracking. Simulation results demonstrate that compared with the previous method, the proposed algorithm reduces running time by 36.18%, 68.61%, and 89.33% and shortens path length by 17.61%, 17.48%, and 12.33% in different static environments. In dynamic environments, it reduces running time by 31.46% and shortens path length by 9.21%, while consistently ensuring path safety.

Key words: mobile robot, adaptive, RRT-connect, dynamic sampling area, DWA, path planning

中图分类号: