系统仿真学报 ›› 2025, Vol. 37 ›› Issue (5): 1234-1245.doi: 10.16182/j.issn1004731x.joss.24-0039

• 研究论文 • 上一篇    下一篇

基于两阶段混合算法的四向穿梭式密集仓储系统货位分配优化

吴自松1, 苌道方2, 盖宇春3   

  1. 1.上海海事大学 物流科学与工程研究院,上海 201306
    2.上海海事大学 物流工程学院,上海 201306
    3.无锡中鼎集成技术有限公司,江苏 无锡 214000
  • 收稿日期:2024-01-10 修回日期:2024-03-04 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 苌道方
  • 第一作者简介:吴自松(1999-),男,硕士生,研究方向为复杂系统建模与仿真。

Optimization of Cargo Location Allocation in Four-way Shuttle Warehousing System Based on Two-stage Hybrid Algorithm

Wu Zisong1, Chang Daofang2, Gai Yuchun3   

  1. 1.Institute of Logistics Science & Engineering, Shanghai Maritime University, Shanghai 201306, China
    2.School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
    3.Wuxi Zhongding Integrated Technology Co. , Ltd. , Wuxi 214000, China
  • Received:2024-01-10 Revised:2024-03-04 Online:2025-05-20 Published:2025-05-23
  • Contact: Chang Daofang

摘要:

为了解决四向穿梭车式密集仓储系统货位分配中存在的货位密集分布、穿梭车容易拥堵等问题,结合四向穿梭式密集仓储系统货位分布的特点,将货位进行栅格化处理,构建了以货架稳定性、出入库效率及设备使用均衡为目标建立货位分配模型;针对该模型设计了一种两阶段混合算法:第一阶段通过引入爬山算法改进非支配排序遗传算法的局部搜索策略,求解一组Pareto前沿集;第二阶段由K-means对Pareto前沿集进行剪枝。通过仿真实验对模型和算法的有效性进行分析,结果表明本方案与目标赋予权重的方案相比,设备使用均衡、货架稳定性、出入库效率目标分别优化了3.1%,4.5%和3.4%,所提出的两阶段混合算法的求解结果与速度均优于非支配排序遗传算法。

关键词: 货位分配, 多目标优化, 非支配排序遗传算法, 爬山算法, K-means

Abstract:

To address issues such as the dense distribution of storage locations and the potential congestion of shuttle vehicles in the four-way shuttle dense storage system, a grid-based approach to the storage location distribution is developed. A location allocation model is then constructed with the goals of ensuring shelf stability, improving warehousing efficiency, and balancing equipment utilization. A two-stage hybrid algorithm is designed for the model. In the first stage, the local search strategy of non-dominant sequencing genetic algorithm(NSGA-II) is enhanced by incorporating the hill climbing algorithm to address a set of Pareto front sets. In the second stage, the Pareto front set is pruned using K-means. Simulation experiments are used to analyze the effectiveness of the model and algorithm. Results indicate significant optimizations in equipment usage balance (3.1%), shelf stability (4.5%), and warehousing efficiency (3.4%) compared to the target weighting scheme. The solution results and speed of the proposed two-stage hybrid optimization algorithm outperform those of the NSGA-II.

Key words: allocation of cargo locations, multi-objective optimization, non-dominant sequencing genetic algorithm, hill climbing algorithm, K-means

中图分类号: