系统仿真学报 ›› 2024, Vol. 36 ›› Issue (12): 2937-2944.doi: 10.16182/j.issn1004731x.joss.23-1242

• 论文 • 上一篇    

城市群客运网络疏散路径优化

贺博威, 李成兵, 聂士达, 王佳琳   

  1. 内蒙古大学 交通学院,内蒙古 呼和浩特 010070
  • 收稿日期:2023-10-16 修回日期:2024-01-02 出版日期:2024-12-20 发布日期:2024-12-20
  • 通讯作者: 李成兵
  • 第一作者简介:贺博威(1998-),男,硕士生,研究方向为城市群交通网络应急组织管理。
  • 基金资助:
    国家自然科学基金(62063023);内蒙古自然科学基金(2023MS05036);内蒙古自治区高等学校青年科技英才支持计划(NJYT22099)

Optimization of Urban Agglomeration Transportation Network Evacuation Paths

He Bowei, Li Chengbing, Nie Shida, Wang Jialin   

  1. School of Transportation, Inner Mongolia University, Hohhot 010070, China
  • Received:2023-10-16 Revised:2024-01-02 Online:2024-12-20 Published:2024-12-20
  • Contact: Li Chengbing

摘要:

针对城市群内部交通网络结构复杂,备选线路多的特点,提出一种改进蚁群算法,用于求解城市群客运网络疏散路径问题。构建了城市群综合客运网络模型,在模型构建中考虑城市范围内虚拟换乘边问题考虑出行时间成本与换乘时间成本构建权重函数;针对蚁群算法进行优化,构建了一种自适应调整的状态转移规则和基于路径长度优化提高算法运算效率的信息素更新规则。结果表明:改进蚁群算法可以有效提高算法收敛效率,降低疏散路径节点数、降低疏散总费用,具有较强的鲁棒性。

关键词: 城市群, 网络模型, 应急疏散, 蚁群算法, 路径优化

Abstract:

Given the complexity of the internal transportation network structure within urban agglomerations and the presence of numerous alternative routes, this paper proposes an enhanced ant colony algorithm to address the evacuation path problem of urban agglomeration transportation networks. A comprehensive urban agglomeration transportation network model is constructed, in which the issue of virtual transfer edges within the urban scope is considered and a weighting function is constructed taking into account the travelling time cost and the transferring time cost. Optimizations are applied to the ant colony algorithm, constructing an adaptive adjustment of state transitions and an information pheromone update rule aiming at accelerating convergence speed. The results show that the improved ant colony algorithm can effectively improve the convergence efficiency, reduce the number of evacuation path nodes, and decrease the total evacuation cost, demonstrating strong robustness.

Key words: urban agglomeration, network model, emergency evacuation, ant colony algorithm, path optimization

中图分类号: