系统仿真学报 ›› 2024, Vol. 36 ›› Issue (6): 1475-1492.doi: 10.16182/j.issn1004731x.joss.23-0524

• 论文 • 上一篇    下一篇

结合评估奖惩机制和邻域动态退化的协同蚁群算法

王育洁(), 游晓明(), 刘升   

  1. 上海工程技术大学,上海 201620
  • 收稿日期:2023-05-06 修回日期:2023-08-06 出版日期:2024-06-28 发布日期:2024-06-19
  • 通讯作者: 游晓明 E-mail:Wyj13942013593@163.com;Yxm7520253@163.com
  • 第一作者简介:王育洁(2000-),女,硕士生,研究方向为智能算法、移动机器人路径规划。E-mail:Wyj13942013593@163.com
  • 基金资助:
    国家自然科学基金(61673258);上海市自然科学基金(19ZR1421600)

Cooperative Ant Colony Algorithm Combining Evaluation Reward and Punishment Mechanism and Neighborhood Dynamic Degradation

Wang Yujie(), You Xiaoming(), Liu Sheng   

  1. Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2023-05-06 Revised:2023-08-06 Online:2024-06-28 Published:2024-06-19
  • Contact: You Xiaoming E-mail:Wyj13942013593@163.com;Yxm7520253@163.com

摘要:

针对蚁群算法在求解旅行商问题中出现收敛速度慢以及易陷入局部最优等问题,提出一种结合评估奖惩机制和邻域动态退化的协同蚁群算法。根据路径评估值将路径划分为活跃路径和舍弃路径,以路径评估值作为权重对两类路径采取不同的信息素奖惩策略,加快算法的收敛速度。采用邻域动态退化策略,利用邻域半径将城市集分为探索区和退化区,自适应缩小蚂蚁的搜索范围,通过保留概率动态保留部分退化区中的城市,结合探索区中的城市一并计算状态转移概率,平衡算法的收敛速度和种群的多样性。采取种间协同进化机制,根据Tanimoto相关系数确定种群间的交互周期,并在算法的不同阶段选择合适的交互方式帮助算法跳出局部最优,提高算法的求解精度,达到种群间有效交流的目的。

关键词: 评估奖惩, 邻域退化, Tanimoto相关系数, 协同进化, 蚁群算法, 旅行商问题

Abstract:

To address the slow convergence and the tendency to fall into local optimality in solving TSP, a cooperative ant colony algorithm combining evaluation reward and punishment mechanism and neighborhood dynamic degradation (ENCACO) is proposed. The paths are classified into active and abandon paths according to the path evaluation value, and with the path evaluation value as the weight, the different pheromone reward and punishment strategies are adopted for the two types of paths to accelerate the convergence speed of the algorithm. Through the neighborhood dynamic degradation strategy, and the neighborhood radius is used to divide the set of cities into exploration and degradation zones. The search range of ants is adaptively reduced, some cities in the degradation zone are dynamically refined by retention probability, and the state transfer probability is calculated together with the population to balance the convergence speed and the population diversity of the algorithm. The interspecies co-evolution mechanism is adopted to determine the interaction period betweenpopulations according to Tanimoto correlation coefficient, and the appropriate interaction is selected at different stages of the algorithm to help the algorithm jump out of the local optimum and improve the solution accuracy to achieve the purpose of effective communication between populations.

Key words: evaluation of rewards and punishment, neighborhood degradation, Tanimoto correlation coefficient, co-evolution, ant colony algorithm, TSP

中图分类号: