系统仿真学报 ›› 2024, Vol. 36 ›› Issue (3): 578-594.doi: 10.16182/j.issn1004731x.joss.22-1232
收稿日期:
2022-10-16
修回日期:
2023-01-30
出版日期:
2024-03-15
发布日期:
2024-03-14
第一作者简介:
万远鹏(1999-),男,硕士生,研究方向为冷链物流运输优化。E-mail:1272803014@qq.com
基金资助:
Wan Yuanpeng(), Liang Chengji, Wang Sihong, Wang Yu
Received:
2022-10-16
Revised:
2023-01-30
Online:
2024-03-15
Published:
2024-03-14
摘要:
冷链物流最重要的目的是保证产品新鲜度,而在此基础上如何降低订单配送的成本是冷链公司急需解决的问题。对消费者来说,产品的质量与食品安全是其主要的需求。因此以配送中心为研究对象,在配送之前根据产品初始新鲜度将产品分成不同的等级,通过对不符合配送要求的订单采用等级向上的替换模式来提升产品整体新鲜度,使客户尽可能获得更好质量的产品,确保顾客的需求得到满足,同时针对配送与库存分配问题进行联合优化,根据最低新鲜度、库存量等为约束建立了双层规划模型,其中上层模型以运输成本、货损成本等之和最小为目标以此确定订单配送以及库存分配方案,下层模型以订单替换成本最小为目标以此确定需要进行订单替换的订单以及替换的产品等级,通过提出改进的自适应遗传算法与cplex分别求解上下层模型,将求解得到的配送方案代入模拟了道路拥堵的仿真模型中进行验证并重新加入双层模型中进行规划;对算例求解的结果表明:订单替换可以有效降低冷链企业运营成本,获得更符合实际的订单配送与库存的分配方案。
中图分类号:
万远鹏,梁承姬,王思洪等 . 考虑订单替换的冷链配送-库存联合优化与仿真[J]. 系统仿真学报, 2024, 36(3): 578-594.
Wan Yuanpeng,Liang Chengji,Wang Sihong,et al . Joint Distribution-Inventory Optimization and Simulation for Cold Chain Logistics Considering Order Substitution[J]. Journal of System Simulation, 2024, 36(3): 578-594.
表2
参数
符号 | 含义 |
---|---|
车辆 | |
生鲜产品在仓库内存储时的库存制冷温度 | |
车辆 | |
分配给需求点 | |
等级为 | |
冷藏车发动机的功率(开制冷压缩机、空调等),在不同的冷藏温度下取值不同 | |
冷藏车传动效率 | |
冷藏车当前载重(当前运输时刻下车辆重量) | |
当前运输时刻下冷藏车的加速度 | |
冷藏车运输过程中的实时速度 | |
当前空气密度 | |
空气动力阻力系数 | |
冷藏车滚动阻力系数 | |
车辆正表面面积 | |
燃料空气质量比 | |
冷藏车发动机摩擦系数 | |
冷藏车发动机转速 | |
冷藏车发动机排量 | |
柴油燃料热值 | |
柴油g/s到L/s的转换因子 | |
冷藏车车厢的热传导系数 | |
冷藏车车厢的平均表面积 | |
冷藏车车厢开口面积 | |
空气表面对流传热系数 | |
订单配送过程中室外温度 | |
与开门频率有关的参数 | |
从需求点i到j的时间 | |
冷藏车 | |
单位柴油价格 | |
驾驶员的单位工资(小时) | |
单位热量需要制冷剂的成本 | |
Arrhenius方程因子 | |
活化能 | |
摩尔气体常数 |
表5
客户订单信息
需求点编号 | 客户点坐标/km | 客户需求量/t | 产品需求等级 | 卸货时间/min |
---|---|---|---|---|
0 | (105,105) | |||
1 | (123,147) | [1.2,1,1.3] | [3,3,2] | [12,10,13] |
2 | (105,51) | [2,1.5,1.2] | [3,2,3] | [20,15,12] |
3 | (145,135) | [1.3,1.4,1.6] | [ | [ |
4 | (165,61) | [1.7,1.3,1.7] | [2,3,1] | [17,13,17] |
5 | (46,90) | [1.5,1.9,1.4] | [2,1,2] | [15,19,14] |
6 | (74,90) | [1.3,1.8,1.7] | [3,3,2] | [13,18,17] |
7 | (61,150) | [1.6,1.4,1.8] | [1,1,2] | [16,14,18] |
8 | (30,129) | [1.8,1.3,1.3] | [2,3,3] | [18,13,13] |
9 | (166,180) | [1.7,2,1.5] | [1,2,1] | [17,20,15] |
10 | (90,179) | [1.9,1.5,1.8] | [1,3,1] | [19,15,18] |
11 | (60,195) | [1.5,1.4,1.6] | [3,3,2] | [15,12,16] |
12 | (15,105) | [1.2,1.4,2] | [3,3,2] | [ |
13 | (90,75) | [1.6,1.9,1.6] | [2,3,3] | [ |
14 | (45,30) | [1.9,1.3,1.7] | [1,2,1] | [19,13,17] |
15 | (90,15) | [1.6,1.7,1.4] | [2,1,2] | [16,17,14] |
16 | (30,60) | [1.4,1.4,1.8] | [3,1,3] | [14,14,18] |
17 | (15,90) | [1.4,1.2,1.6] | [1,2,1] | [14,12,16] |
18 | (60,120) | [1.5,1.6,1.5] | [3,1,3] | [15,16,15] |
19 | (45,180) | [1.2,1.5,1.3] | [2,2,1] | [12,15,13] |
20 | (135,195) | [1.8,1.4,1.6] | [3,2,3] | [18,14,16] |
表12
各车辆第一周期配载以及订单分配信息
车辆编号 | 车辆配载 | 订单编号 | 卸货结束时刻 | 库存分配货物数量/t | |||
---|---|---|---|---|---|---|---|
货物等级 | 数量/t | 等级1 | 等级2 | 等级3 | |||
1 | 1 | 3.8 | 5 | 05:56 | 0.2 | 1.3 | 0 |
2 | 2.4 | 17 | 06:45 | 1.4 | 0 | 0 | |
3 | 0 | 16 | 07:36 | 0.3 | 1.1 | 0 | |
14 | 08:41 | 1.9 | 0 | 0 | |||
2 | 1 | 1.3 | 6 | 06:50 | 0 | 0.5 | 0.8 |
2 | 4.4 | 13 | 07:35 | 0.5 | 1.1 | 0 | |
3 | 0.8 | 2 | 08:37 | 0.4 | 1.6 | 0 | |
15 | 09:43 | 0.4 | 1.2 | 0 | |||
3 | 1 | 2.8 | 18 | 08:12 | 0.2 | 1.3 | 0 |
2 | 3.2 | 8 | 09:12 | 0.4 | 1.5 | 0 | |
3 | 0 | 7 | 10:09 | 1.6 | 0 | 0 | |
19 | 10:56 | 0.4 | 1 | 0 | |||
4 | 1 | 2.1 | 1 | 09:05 | 0 | 0 | 1.2 |
2 | 2 | 20 | 10:13 | 0.2 | 1.5 | 0 | |
3 | 1.2 | 10 | 11:14 | 1.9 | 0 | 0 | |
11 | 12:01 | 0 | 1.5 | 0 | |||
5 | 1 | 3.2 | 3 | 10:06 | 1.3 | 0 | 0 |
2 | 2.5 | 9 | 11:08 | 1.7 | 0 | 0 | |
3 | 0 | 12 | 12:21 | 0.2 | 1 | 0 | |
4 | 13:08 | 0 | 1.4 | 0 | |||
1 | 1 | 0.2 | 19 | 14:26 | 0.2 | 1 | 0 |
2 | 1.5 | 11 | 14:57 | 0 | 0.5 | 1 | |
3 | 1 | ||||||
2 | 1 | 1 | 12 | 15:16 | 0 | 0 | 1.2 |
2 | 0.2 | 4 | 16:04 | 1 | 0.2 | 0 | |
3 | 1.2 |
表13
各车辆第二周期配载以及订单分配信息
车辆编号 | 车辆配载 | 订单编号 | 卸货结束时间 | 库存分配货物数量/t | |||
---|---|---|---|---|---|---|---|
货物等级 | 数量/t | 等级1 | 等级2 | 等级3 | |||
1 | 1 | 3.3 | 2 | 05:51 | 0.3 | 1.2 | 0 |
2 | 3.6 | 15 | 06:34 | 1.7 | 0 | 0 | |
3 | 0 | 13 | 07:35 | 0.7 | 1.2 | 0 | |
6 | 08:07 | 0.6 | 1.2 | 0 | |||
2 | 1 | 3.2 | 5 | 07:01 | 1.9 | 0 | 0 |
2 | 2.3 | 17 | 07:34 | 0.2 | 1 | 0 | |
3 | 0 | 16 | 08:11 | 1.4 | 0 | 0 | |
14 | 08:47 | 0 | 1.3 | 0 | |||
3 | 1 | 2.6 | 18 | 08:48 | 1.6 | 0 | 0 |
2 | 2.9 | 8 | 09:21 | 0 | 1 | 0.3 | |
3 | 0.3 | 19 | 10:11 | 0.4 | 1.1 | 0 | |
11 | 10:40 | 0.6 | 0.8 | 0 | |||
4 | 1 | 1.4 | 7 | 09:42 | 1.4 | 0 | 0 |
2 | 3.4 | 10 | 10:15 | 0 | 0.2 | 1.3 | |
3 | 1.5 | 20 | 11:01 | 0 | 1.2 | 0.2 | |
9 | 11:44 | 0 | 2 | 0 | |||
5 | 1 | 0.9 | 12 | 10:44 | 0 | 0 | 1.4 |
2 | 2.8 | 3 | 11:19 | 0.5 | 0.9 | 0 | |
3 | 1.4 | 1 | 12:05 | 0.4 | 0 | 0 | |
4 | 13:12 | 0 | 1.3 | 0 | |||
1 | 1 | 0 | 11 | 14:06 | 0 | 0 | 1.4 |
2 | 0 | ||||||
3 | 1.4 |
表14
各车辆第三周期配载以及订单分配信息
车辆编号 | 车辆配载 | 订单编号 | 卸货结束时间 | 库存分配货物数量/t | |||
---|---|---|---|---|---|---|---|
货物等级 | 数量/t | 等级1 | 等级2 | 等级3 | |||
1 | 1 | 1 | 6 | 05:39 | 0.2 | 1.5 | 0 |
2 | 3.3 | 13 | 06:10 | 0 | 0 | 1.6 | |
3 | 1.6 | 2 | 06:41 | 0.4 | 0.8 | 0 | |
15 | 07:39 | 0.4 | 1 | 0 | |||
2 | 1 | 2 | 7 | 07:02 | 0.8 | 0.6 | 0 |
2 | 3.8 | 18 | 07:37 | 0.3 | 1.2 | 0 | |
3 | 0 | 8 | 08:26 | 0.2 | 1.1 | 0 | |
19 | 09:14 | 1.3 | 0 | 0 | |||
3 | 1 | 4.3 | 5 | 07:55 | 0.7 | 0.7 | 0 |
2 | 2.1 | 17 | 08:31 | 1.6 | 0 | 0 | |
3 | 0 | 14 | 09:49 | 1.7 | 0 | 0 | |
16 | 10:29 | 0.3 | 1.4 | 0 | |||
4 | 1 | 3.3 | 1 | 08:43 | 0 | 1.3 | 0 |
2 | 3 | 10 | 09:32 | 1.8 | 0 | 0 | |
3 | 0 | 11 | 10:11 | 0.9 | 0.7 | 0 | |
20 | 11:17 | 0.6 | 1 | 0 | |||
5 | 1 | 2.6 | 3 | 10:01 | 0 | 0 | 1.6 |
2 | 1.6 | 9 | 10:46 | 1.5 | 0 | 0 | |
3 | 1.6 | 12 | 12:16 | 0.4 | 1.6 | 0 | |
4 | 13:04 | 1.7 | 0 | 0 | |||
1 | 1 | 0 | 8 | 14:05 | 0 | 0 | 1.3 |
2 | 1.8 | 16 | 15:09 | 0 | 1.8 | 0 | |
3 | 1.3 |
1 | 吴旭. 城市生鲜农产品冷链物流库存与配送协同优化研究[D]. 北京: 北京交通大学, 2019. |
Wu Xu. Research on Collaborative Optimization of Cold Chain Logistics Inventory and Distribution of Urban Fresh Agricultural Products[D]. Beijing: Beijing Jiaotong University, 2019. | |
2 | 陈军. 考虑消费者选择行为的农产品质量分级博弈分析[J]. 运筹与管理, 2020, 29(10): 68-75. |
Chen Jun. Game Analysis of Agri-food Quality Classification Under Consumer Selection Behavior[J]. Operations Research and Management Science, 2020, 29(10): 68-75. | |
3 | Ji Ying, Du Jianhui, Han Xiaoya, et al. A Mixed Integer Robust Programming Model for Two-echelon Inventory Routing Problem of Perishable Products[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 548: 124481. |
4 | Azadeh A, Elahi S, Farahani M H. A Genetic Algorithm-taguchi Based Approach to Inventory Routing Problem of a Single Perishable Product with Transshipment[J]. Computers & Industrial Engineering, 2017, 104: 124-133. |
5 | Hsiao Y H, Chen Muchen, Chin C L. Distribution Planning for Perishable Foods in Cold Chains with Quality Concerns: Formulation and Solution Procedure[J]. Trends in Food Science & Technology, 2017, 61: 80-93. |
6 | CHAN F T S, Wang Z X, Goswami A, et al. Multi-objective Particle Swarm Optimisation Based Integrated Production Inventory Routing Planning for Efficient Perishable Food Logistics Operations[J]. International Journal of Production Research, 2020, 58(17): 5155-5174. |
7 | Li Yantong, Chu Feng, Yang Zhen, et al. A Production Inventory Routing Planning for Perishable Food with Quality Consideration[J]. IFAC-PapersOnLine, 2016, 49(3): 407-412. |
8 | 巫威眺, 王殿雷, 马昌喜. 液化天然气库存路径问题建模与算法[J]. 中国公路学报, 2022, 35(11): 252-270. |
Wu Weitiao, Wang Dianlei, Ma Changxi. Model and Algorithm for Inventory Routing Problem of Liquified Natural Gas[J]. China Journal of Highway and Transport, 2022, 35(11): 252-270. | |
9 | 赵志学, 李夏苗, 周鲜成, 等. 考虑交通拥堵的冷链物流城市配送的GVRP研究[J]. 计算机工程与应用, 2020, 56(1): 224-231. |
Zhao Zhixue, Li Xiamiao, Zhou Xiancheng, et al. Research on Green Vehicle Routing Problem of Cold Chain Distribution: Considering Traffic Congestion[J]. Computer Engineering and Applications, 2020, 56(1): 224-231. | |
10 | 赵邦磊, 桂海霞, 李慧宗, 等. 考虑交通状况的冷链物流路径优化[J]. 制造业自动化, 2021, 43(4): 90-95. |
Zhao Banglei, Gui Haixia, Li Huizong, et al. Cold Chain Logistics Route Optimization Considering Traffic Condition[J]. Manufacturing Automation, 2021, 43(4): 90-95. | |
11 | 王恒, 徐亚星, 王振锋, 等. 基于道路状况的生鲜农产品配送路径优化[J]. 系统仿真学报, 2019, 31(1): 126-135. |
Wang Heng, Xu Yaxing, Wang Zhenfeng, et al. Distribution Routing Optimization of Fresh Agricultural Products Based on Road Conditions[J]. Journal of System Simulation, 2019, 31(1): 126-135. | |
12 | 吴瑶, 马祖军. 时变路网下带时间窗的易腐食品生产-配送问题[J]. 系统工程理论与实践, 2017, 37(1): 172-181. |
Wu Yao, Ma Zujun. Time-dependent Production-Delivery Problem with Time Windows for Perishable Foods[J]. Systems Engineering-Theory & Practice, 2017, 37(1): 172-181. | |
13 | 王淑云, 姜樱梅, 王宪杰. 变质率呈Weibull分布的一体化三级冷链库存策略研究[J]. 管理工程学报, 2015, 29(2): 229-239. |
Wang Shuyun, Jiang Yingmei, Wang Xianjie. An Integrated Three-echelon Inventory Model for Cold Chain Items with Weibull Distribution[J]. Journal of Industrial Engineering and Engineering Management, 2015, 29(2): 229-239. | |
14 | 黎莎, 修睿, 计明军. 基于新鲜度动态变化的冷链物流库存分配与运输路径联合优化[J]. 系统工程, 2021, 39(5): 69-80. |
Li Sha, Xiu Rui, Ji Mingjun. Integrated Optimization of Cold Chain Logistics Inventory Allocation and Transportation Route Based on Dynamic Freshness[J]. Systems Engineering, 2021, 39(5): 69-80. | |
15 | Wu Wentao, Beretta Claudio, Cronje Paul, et al. Environmental Trade-offs in Fresh-fruit Cold Chains by Combining Virtual Cold Chains with Life Cycle Assessment[J]. Applied Energy, 2019, 254: 113586. |
16 | 张福生, 何成芳, 朱鸿杰. 基于腐烂指数的草莓采后货架期预测模型[J]. 江苏农业科学, 2016, 44(2): 320-323. |
17 | Xiao Yiyong, Zhao Qiuhong, Kaku Ikou, et al. Development of a Fuel Consumption Optimization Model for the Capacitated Vehicle Routing Problem[J]. Computers & Operations Research, 2012, 39(7): 1419-1431. |
18 | Wu Weitiao, Zhou Wei, Lin Yue, et al. A Hybrid Metaheuristic Algorithm for Location Inventory Routing Problem with Time Windows and Fuel Consumption[J]. Expert Systems with Applications, 2021, 166: 114034. |
19 | Leng Longlong, Zhang Chunmiao, Zhao Yanwei, et al. Biobjective Low-Carbon Location-Routing Problem for Cold Chain Logistics: Formulation and Heuristic Approaches[J]. Journal of Cleaner Production, 2020, 273: 122801. |
20 | 朱桂阳, 贾涛, 林峰, 等. 考虑缺货的两阶段腐败一体化库存—路径模型[J]. 工业工程与管理, 2016, 21(5): 62-68. |
Zhu Guiyang, Jia Tao, Lin Feng, et al. Integrated Inventory Routing Problem with In-transit and Retail Deterioration Allowing for Lost Sale[J]. Industrial Engineering and Management, 2016, 21(5): 62-68. | |
21 | 肖智豪, 胡志华, 朱琳. 求解冷链物流时间依赖型车辆路径问题的混合自适应大邻域搜索算法[J]. 计算机应用, 2022, 42(9): 2926-2935. |
Xiao Zhihao, Hu Zhihua, Zhu Lin. Hybrid Adaptive Large Neighborhood Search Algorithm for Solving Time-dependent Vehicle Routing Problem in Cold Chain Logistics[J]. Journal of Computer Applications, 2022, 42(9): 2926-2935. | |
22 | 孙波, 姜平, 周根荣, 等. 基于改进遗传算法的AGV路径规划[J]. 计算机工程与设计, 2020, 41(2): 550-556. |
Sun Bo, Jiang Ping, Zhou Genrong, et al. AGV Optimal Path Planning Based on Improved Genetic Algorithm[J]. Computer Engineering and Design, 2020, 41(2): 550-556. | |
23 | Qin Gaoyuan, Tao Fengming, Li Lixia. A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions[J]. International Journal of Environmental Research and Public Health, 2019, 16(4): 576. |
24 | Wang Songyi, Tao Fengming, Shi Yuhe. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint[J]. International Journal of Environmental Research and Public Health, 2018, 15(1): 86. |
[1] | 阎世梁, 王银玲, 路丹丹, 潘小琴. 基于深度神经网络的永磁直线电机仿真与优化[J]. 系统仿真学报, 2024, 36(3): 713-725. |
[2] | 张红历, 邓井双. 基于遗传算法的人工人口生成与应用研究[J]. 系统仿真学报, 2023, 35(9): 1965-1974. |
[3] | 吴玉文, 牛智越, 李珍萍. 基于改进遗传算法的货箱机器人拣选路径规划[J]. 系统仿真学报, 2023, 35(5): 1086-1097. |
[4] | 李志强, 李元龙, 殷来祥, 马向平. 智能无人蜂群作战系统适应性进化模型仿真研究[J]. 系统仿真学报, 2023, 35(4): 878-886. |
[5] | 张虎成, 杨镜宇. 基于GABC算法的作战体系智能优化方法研究[J]. 系统仿真学报, 2023, 35(1): 221-227. |
[6] | 徐佳, 韩逢庆, 刘奇鑫, 薛晓霞. 一种求解TSP的生物信息启发式遗传算法[J]. 系统仿真学报, 2022, 34(8): 1811-1819. |
[7] | 于淼, 李曼茹, 赵愈. 考虑等待提示机制的呼叫中心联合排班方法[J]. 系统仿真学报, 2022, 34(7): 1651-1661. |
[8] | 李智杰, 石昊琦, 李昌华, 张颉. 基于改进遗传算法的影像中心布局优化方法[J]. 系统仿真学报, 2022, 34(6): 1173-1184. |
[9] | 付建林, 丁国富, 张剑, 江海凡, 郭沛佩. 基于响应面和NSGA-II的AGV系统多目标优化配置[J]. 系统仿真学报, 2022, 34(5): 994-1002. |
[10] | 宁涛, 苟涛, 刘向东. 考虑低碳约束的生鲜农产品冷链物流策略仿真研究[J]. 系统仿真学报, 2022, 34(4): 797-805. |
[11] | 王喆, 邵鸿远, 丛子皓, 马雯雯. 考虑供应商聚类的应急医疗物资协同配送仿真[J]. 系统仿真学报, 2022, 34(10): 2303-2311. |
[12] | 王语童, 马世伟, 杨元睿, 陈超宇. 多机器人组合最大覆盖面积寻优及预测方法[J]. 系统仿真学报, 2022, 34(1): 86-92. |
[13] | 何昕杰, 周少武, 张红强, 吴亮红, 周游. 基于改进遗传算法的四向穿梭车系统订单排序优化[J]. 系统仿真学报, 2021, 33(9): 2166-2179. |
[14] | 唐婕, 曹瑾鑫. 共享汽车联合调度优化研究[J]. 系统仿真学报, 2021, 33(8): 1959-1968. |
[15] | 陈芮莹, 王承涛, 刘振元. 考虑服务水平的IT运维人员调度的智能遗传算法[J]. 系统仿真学报, 2021, 33(3): 732-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||