系统仿真学报 ›› 2022, Vol. 34 ›› Issue (10): 2194-2203.doi: 10.16182/j.issn1004731x.joss.21-0456
收稿日期:2021-05-21
修回日期:2021-09-01
出版日期:2022-10-30
发布日期:2022-10-18
通讯作者:
刘晓涛
E-mail:958933601@qq.com;xtliu@xidian.edu.cn
第一作者简介:李怡桐(1997-),女,蒙古族,硕士生,研究方向为时间序列数据挖掘、复杂网络系统认知、智能优化与学习。 E-mail:958933601@qq.com
基金资助:
Yitong Li1(
), Xiaotao Liu1(
), Jing Liu1, Kai Wu2
Received:2021-05-21
Revised:2021-09-01
Online:2022-10-30
Published:2022-10-18
Contact:
Xiaotao Liu
E-mail:958933601@qq.com;xtliu@xidian.edu.cn
摘要:
为解决现有方法对较长、复杂度分布不均序列的错分类问题,提取序列复杂度的局部信息,提出了加权局部复杂度不变性距离(WLCID),包含复杂度局部表征和全局加权整合两个模型。利用滑窗分解序列,结合复杂度不变性距离表示方法提取局部复杂度信息;通过建立类表征模型,以类间距越大的子段对分类正确的贡献度越大为依据,通过归一化累积类间距来量化整合权重。与相似算法的对比实验表明:此方法不仅在复杂度分布不均的数据中表现突出,在大多数测试集也有较好的效果。在分类和聚类任务上精度的提升,说明方法在表示时间序列形态特征的复杂度信息上具有较好的能力。
中图分类号:
李怡桐,刘晓涛,刘静等 . 基于加权局部复杂不变性的时间序列分类算法[J]. 系统仿真学报, 2022, 34(10): 2194-2203.
Yitong Li,Xiaotao Liu,Jing Liu,et al . Weighted Local Complexity Invariance for Time Series Classification[J]. Journal of System Simulation, 2022, 34(10): 2194-2203.
表1
基于ED和不同复杂度不变性距离的分类结果 (%)
| 数据集 | ED | CID | WLCID |
|---|---|---|---|
| Chinatown | 94.20 | 94.49 | 97.39 |
| BeetleFly | 75.00 | 70.00 | 80.00 |
| BirdChicken | 55.00 | 65.00 | 85.00 |
| FaceFour | 78.41 | 80.68 | 85.23 |
| ECG200 | 88.00 | 89.00 | 89.00 |
| Herring | 51.56 | 54.69 | 57.81 |
| Sony1 | 69.55 | 81.53 | 82.70 |
| DPOutlineCorrect | 71.74 | 71.38 | 74.28 |
| Rock | 64.00 | 66.00 | 70.00 |
| DSizeReduction | 93.46 | 93.46 | 94.12 |
| Fish | 78.29 | 78.29 | 82.86 |
| ECGFiveDays | 79.67 | 78.16 | 89.31 |
| Trace | 76.00 | 86.00 | 83.00 |
| MPTW | 51.30 | 50.00 | 51.30 |
| OSULeaf | 52.07 | 56.20 | 58.26 |
表2
DTW和不同复杂度表示方式的分类结果 (%)
| 数据集 | DTW | CID | WLCID |
|---|---|---|---|
| Chinatown | 95.36 | 95.07 | 96.52 |
| BeetleFly | 70.00 | 70.00 | 75.00 |
| BirdChicken | 75.00 | 75.00 | 80.00 |
| FaceFour | 84.09 | 87.50 | 90.91 |
| ECG200 | 80.00 | 80.00 | 89.00 |
| Herring | 54.69 | 54.69 | 57.81 |
| Sony1 | 71.21 | 81.86 | 81.03 |
| DPOutlineCorrect | 72.46 | 71.01 | 71.74 |
| Rock | 58.00 | 46.00 | 70.00 |
| DSizeReduction | 96.08 | 95.75 | 96.08 |
| Fish | 86.29 | 85.71 | 76.00 |
| ECGFiveDays | 77.47 | 78.98 | 84.20 |
| Trace | 99.00 | 99.00 | 99.00 |
| MPTW | 49.35 | 50.00 | 52.60 |
| OSULeaf | 63.64 | 66.12 | 61.57 |
| 1 | Wang W, Shi Y, Luo R. Sparse Representation Based Approach to Prediction for Economic Time Series[J]. IEEE Access (S2169-3536), 2019, 7: 20614-20618. |
| 2 | Mehdiyev N, Lahann J, Emrich A, et al. Time Series Classification Using Deep Learning for Process Planning: A Case from the Process Industry[J]. Procedia Computer Science(S1877-0509), 2017, 114: 242-249. |
| 3 | Catley C, Stratti H, Mcgregor C. Multi-Dimensional Temporal Abstraction and Data Mining of Medical Time Series Data: Trends and Challenges[J]. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference (S1558-4615), 2017, 2008: 4322-4325. |
| 4 | Gasparrini A, Armstrong B, Kenward M G. Dlnm: Distributed Lag Non-Linear Models[J]. Statistics in Medicine (S1097-0258), 2017, 29(21): 2224-2234. |
| 5 | Shen F, Liu J, Wu K. Multivariate Time Series Forecasting Based on Elastic Net and High-Order Fuzzy Cognitive Maps: A Case Study on Human Action Prediction through EEG Signals[J]. IEEE Transactions on Fuzzy Systems (S1941-0034), 2020, 29(8): 2336-2348. |
| 6 | 刘文法, 王旭, 张建邦. 基于LS-SVM的装备需求时间序列预测[J]. 弹箭与制导学报, 2006, 26(1): 780-783. |
| Liu Wenfa, Wang Xu, Zhang Jianbang. Time Series Prediction of Equipment Demand Based on LS-SVM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 780-783. | |
| 7 | Bagnall A, Lines J, Bostrom A, et al. The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[J]. Data Mining and Knowledge Discovery (S1384-5810), 2017, 31(3): 606-660. |
| 8 | Gong Z, Chen H, Yuan B, et al. Multiobjective Learning in the Model Space for Time Series Classification[J]. IEEE Transactions on Cybernetics (S2168-2275), 2019, 49(3): 918-932. |
| 9 | Fawaz H I, Forestier G, Weber J, et al. Deep Learning for Time Series Classification: A Review[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33(4): 917-963. |
| 10 | Abanda A, Mori U, Lozano J A. A Review on Distance Based Time Series Classification[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33: 378-412. |
| 11 | Górecki Tomasz, Łuczak Maciej. Using Derivatives in Time Series Classification[J]. Communications in Statistics: Simulation and Computation(S0361-0918), 2013, 26(2): 310-331. |
| 12 | Jeong Y S, Jeong M K, Omitaomu O A. Weighted Dynamic Time Warping for Time Series Classification[J]. Pattern Recognition (S0031-3203), 2011, 44(9): 2231-2240. |
| 13 | Kate, Rohit J. Using Dynamic Time Warping Distances as Features for Improved Time Series Classification[J]. Data Mining and Knowledge Discovery(S1384-5810), 2016, 30(2): 283-312. |
| 14 | Marteau, Pierre-François. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S1939-3539), 2008, 31(2): 306-318. |
| 15 | Stefan A, Athitsos V, Das G. The Move-Split-Merge Metric for Time Series[J]. IEEE Transactions on Knowledge and Data Engineering(S1041-4347), 2013, 25(6): 1425-1438. |
| 16 | Batista G, Keogh E J, Tataw O M, et al. CID: An Efficient Complexity-Invariant Distance for Time Series[J]. Data Mining and Knowledge Discovery (S1384-5810), 2014, 28(3): 634-669. |
| 17 | Amato F, Laib M, Guignard F, et al. Analysis of Air Pollution Time Series Using Complexity-Invariant Distance and Information Measures[J]. Physica A: Statistical Mechanics and its Applications(S0378-4371), 2020, 547: 124391. |
| 18 | Zhao X, Ji M, Zhang N, et al. Permutation Transition Entropy: Measuring the Dynamical Complexity of Financial Time Series[J]. Chaos Solitons & Fractals (S0960-0779), 2020, 139: 109962. |
| 19 | Biswal B, Biswal M, Hasan S, et al. Nonstationary Power Signal Time Series Data Classification Using LVQ Classifier[J]. Applied Soft Computing (S1568-4946), 2014, 18: 158-166. |
| 20 | Whelen T, Siqueira P. Time-Series Classification of Sentinel-1 Agricultural Data over North Dakota[J]. Remote Sensing Letters (S2150-704X), 2018, 9(5): 411-420. |
| 21 | Calegari G R, Carlino E, Peroni D, et al. Filtering and Windowing Mobile Traffic Time Series for Territorial Land Use Classification[J]. Computer Communications (S0140-3664), 2016, 95(1): 15-28. |
| 22 | Dau, Anh H, Bagnall A, et al. The UCR Time Series Archive[J]. IEEE/CAA Journal of Automatica Sinica (S2329-9266), 2019(6): 1293-1305. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [8] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [9] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [10] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [11] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [12] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [13] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| [14] | 张志利, 刘瑾, 周召发, 梁哲, 张云昊. 基于ISCSO-BP神经网络模型的光纤陀螺温度补偿技术研究[J]. 系统仿真学报, 2025, 37(11): 2904-2917. |
| [15] | 陈际同, 周佳加, 吴迪, 江海龙. 基于TD3-RRT的特殊环境下USV路径规划算法研究[J]. 系统仿真学报, 2025, 37(11): 2888-2903. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||