系统仿真学报 ›› 2018, Vol. 30 ›› Issue (11): 4158-4171.doi: 10.16182/j.issn1004731x.joss.201811014

• 仿真建模理论与方法 • 上一篇    下一篇

基于RTS视角的指挥控制系统智能化技术

伍文峰1,2, 张昱1, 荣明1   

  1. 1. 国防大学联合作战学院联合作战演训中心,北京 100091;
    2. 陆军炮兵防空兵学院军政基础系军事运筹教研室,安徽 合肥 230031
  • 收稿日期:2018-05-31 修回日期:2018-06-26 发布日期:2019-01-04
  • 作者简介:伍文峰(1982-),男,湖北钟祥,博士,讲师,研究方向为体系评估、体系建模与仿真;张昱(1979-),男,四川南充,博士,讲师,研究方向为战争复杂系统建模与仿真、智能化指挥与控制。
  • 基金资助:
    中国博士后科学基金(2017M613318)

Intelligent Technology of Command and Control System in the RTS Perspective

Wu Wenfeng1,2, Zhang Yu1, Rong Ming1   

  1. 1. Joint Operations College Joint Operations Training Center, National Defense University, Beijing 100091, China;
    2. Military Operations Teaching and Research Office, Army Artillery and Air Defense Academy, Hefei 230031, China
  • Received:2018-05-31 Revised:2018-06-26 Published:2019-01-04

摘要: 即时战略(Real-Time Strategy,RTS)游戏对于研究指挥控制系统智能化技术有重要参考价值。针对指挥决策过程阐述了RTS游戏与战略战役级指挥控制系统的相似性,分析了RTS游戏中智能化技术面临的规划、学习、不确定和时空推理等问题带来的挑战,研究了行动序列规划、敌方规划识别、状态评估、多智能体协作和多尺度AI等关键技术及最新研究进展,指出了战略战役级指挥控制系统智能化技术发展的趋势,为指挥控制系统的智能化技术开发和研究提供了有益借鉴。

关键词: 即时战略游戏, 指挥控制系统, 人工智能, 任务规划, 深度学习

Abstract: Real-Time Strategy (RTS) games have important reference value for studying the intelligent technology of command and control systems. The similarities between RTS games and the strategic battle level command and control systems are described according to the decision process. The challenges brought by the problems of planning, learning, uncertainty and space-time reasoning in the intelligent technology of RTS games are analyzed. The key technologies and latest research progress of action sequence planning, plan recognition, state assessment, multi-agent collaboration and multi-scale AI are studied. The trend of intelligent technology development of strategic and operational level command and control systems is pointed out. It provides a useful reference for the development and research of intelligent technology for command and control systems.

Key words: Real Time Strategy, Command and Control System, Artificial Intelligence, Task Planning, Deep Learning

中图分类号: