系统仿真学报 ›› 2018, Vol. 30 ›› Issue (8): 2875-2883.doi: 10.16182/j.issn1004731x.joss.201808008

• 仿真建模理论与方法 • 上一篇    下一篇

基于柯西变异的多策略协同进化粒子群算法

王永骥, 苏婷婷, 刘磊   

  1. 华中科技大学自动化学院多谱信息处理技术国家级重点实验室,湖北 武汉 430074
  • 收稿日期:2016-11-11 出版日期:2018-08-10 发布日期:2019-01-08
  • 作者简介:王永骥(1955-),男,江西吉安,博士,教授,博导,研究方向为飞行器制导控制,智能优化与智能控制;苏婷婷(1993-),女,浙江温州,硕士生,研究方向为飞行器轨迹优化,智能优化算法。
  • 基金资助:
    国家自然科学基金面上项目(61473124)

Multi-strategy Cooperative Evolutionary PSO Based on Cauchy Mutation Strategy

Wang Yongji, Su Tingting, Liu Lei   

  1. National Key Laboratory of Science and Technology on Multispectral Information Processing, Automation College, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2016-11-11 Online:2018-08-10 Published:2019-01-08

摘要: 为了提高粒子群算法在优化仿真中的性能,提出基于柯西变异的多策略协同进化粒子群算法。该方法将种群划分为3个子群,以一定的概率选中粒子进行柯西变异,未被选中的粒子采用不同的子群进化策略(大范围搜索策略,精细搜索策略,自适应速度更新策略)来调节自身的开发能力探测能力,子群间通过共享信息来达成协同合作。仿真中将3种策略应用在3种测试函数的优化中,验证3种策略的优点,同时对月球软着陆进行仿真寻优,结果表明改进PSO的优化性能优于其它改进算法,采用OpenMP对改进PSO进行并行化仿真,提高并行化PSO算法的效率。

关键词: 粒子群算法, 多策略, 开发, 探测, 柯西变异, OpenMP并行化

Abstract: For improving the performance of particle swarm optimization (PSO) in optimization simulation, a multi-strategy cooperative evolutionary PSO based on Cauchy mutation strategy is proposed. The new algorithm divides the whole swarm into three sub-swarms. A part of particles is selected to Cauchy mutation with a certain probability, and the rest of particles adjust their exploitation and exploration by different evolutionary strategies (large-scale search strategy, local search strategy, and adaptive velocity updating strategy). The sub-swarms share their information to achieve cooperation. Three strategies are used to optimize three test functions, and the result shows the advantages of three strategies. The simulation experiment uses the soft lunar landing problem as the simulation model to optimize the trajectory. Simulation results indicate that the performance of improved PSO is superior to other PSO. The simulation uses OpenMP to parallelization optimization, which improves the efficiency of the algorithm.

Key words: particle swarm optimization, multi-strategy, exploitation, exploration, Cauchy mutation strategy, OpenMP parallelization

中图分类号: