系统仿真学报 ›› 2024, Vol. 36 ›› Issue (4): 915-928.doi: 10.16182/j.issn1004731x.joss.22-1500
收稿日期:2022-12-14
修回日期:2023-03-02
出版日期:2024-04-15
发布日期:2024-04-18
通讯作者:
王艳
E-mail:2041203565@qq.com;wangyan88@jiangnan.edu.cn
第一作者简介:张坤鹏(1998-),男,硕士生,研究方向为云制造资源配置与决策。E-mail:2041203565@qq.com
基金资助:
Zhang Kunpeng(
), Wang Yan(
), Ji Zhicheng
Received:2022-12-14
Revised:2023-03-02
Online:2024-04-15
Published:2024-04-18
Contact:
Wang Yan
E-mail:2041203565@qq.com;wangyan88@jiangnan.edu.cn
摘要:
为解决云制造过程中云平台经营方与需求方之间的不完全信息以及相互竞争制约的关系导致制造服务难以抉择的问题,提出了一种基于不完全信息博弈模型的云制造群智能优化方法。以各自理性追求自身收益函数最大化为目标,针对需求方与云平台之间的利益竞争关系建立了基于不完全信息的静态博弈模型,并提出了需求方与云平台之间的竞争规则,通过海萨尼转换引入自然,将其转换为完全信息下的动态博弈得到贝叶斯扩展式,并证明了贝叶斯纳什均衡的存在性和唯一性。提出了一种基于高斯函数与扰动策略更新的粒子群算法对上述模型进行求解。仿真结果表明:改进算法相对其他算法有较快的收敛速度与较高的云制造系统总收益,不完全信息博弈模型能够兼顾不同类型的需求方提高云制造系统的总收益。
中图分类号:
张坤鹏,王艳,纪志成 . 基于不完全信息博弈的云制造群智能优化方法[J]. 系统仿真学报, 2024, 36(4): 915-928.
Zhang Kunpeng,Wang Yan,Ji Zhicheng . Intelligent Optimization Method of Cloud Manufacturing Swarm Based on Incomplete Information Game[J]. Journal of System Simulation, 2024, 36(4): 915-928.
表3
任务信息加工
| 候选资源 | ||||||
|---|---|---|---|---|---|---|
| 20/125/0.75 | — | 30/100/0.70 | — | 25/115/0.85 | — | |
| — | 35/100/0.70 | 25/100/0.60 | 20/110/0.50 | — | 30/130/0.80 | |
| 30/110/0.60 | — | 30/120/0.85 | — | 30/110/0.80 | 40/120/0.85 | |
| — | 20/130/0.70 | — | 60/120/0.90 | — | — | |
| 20/120/0.70 | — | — | 50/100/0.70 | — | 40/110/0.90 | |
| — | 30/130/0.80 | 40/120/0.85 | — | 40/110/0.90 | — | |
| — | 25/110/0.60 | — | — | — | 35/100/0.70 | |
| — | — | 25/100/0.60 | — | 50/120/0.95 | — | |
| — | 30/110/0.60 | — | 40/130/0.80 | — | — | |
| 35/100/0.80 | — | 20/130/0.80 | — | 40/120/0.95 | 35/120/0.90 | |
| 30/100/0.60 | 35/120/0.80 | — | 45/130/0.85 | — | — | |
| — | — | 35/120/0.80 | — | 30/100/0.75 | 40/130/0.95 | |
| 40/90/0.70 | — | — | 35/110/0.65 | — | — | |
| 20/120/0.70 | — | 30/110/0.60 | — | 20/120/0.60 | — | |
| — | — | — | 35/120/0.70 | — | 30/120/0.85 | |
| — | 25/110/0.65 | — | 50/110/0.80 | — | 25/100/0.60 |
| 1 | 姚娟, 邢镔, 曾骏, 等. 云制造服务组合研究综述[J]. 计算机科学, 2021, 48(7): 245-255. |
| Yao Juan, Xing Bin, Zeng Jun, et al. Survey on Cloud Manufacturing Service Composition[J]. Computer Science, 2021, 48(7): 245-255. | |
| 2 | Liu Yongkui, Wang Lihui, Wang Xi, et al. Scheduling in Cloud Manufacturing: State-of-the-art and Research Challenges[J]. International Journal of Production Research, 2019, 57(15/16): 4854-4879. |
| 3 | Simeone Alessandro, Deng Bin, Caggiano Alessandra. Resource Efficiency Enhancement in Sheet Metal Cutting Industrial Networks Through Cloud Manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1345-1365. |
| 4 | Ding Shuhui, Han Jingliang, Meng Xiaojun, et al. Multi-granularity Modeling and Aggregation of Design Resources in Cloud Manufacturing[J]. IEEE Access, 2020, 8: 130797-130819. |
| 5 | 冯晨微, 王艳. 云制造系统并行任务优化调度[J]. 系统仿真学报, 2019, 31(12): 2626-2635. |
| Feng Chenwei, Wang Yan. Parallel Tasks Optimization Scheduling in Cloud Manufacturing System[J]. Journal of System Simulation, 2019, 31(12): 2626-2635. | |
| 6 | Yu Chunxia, Zhang Luping, Zhao Wenfan, et al. A Blockchain-based Service Composition Architecture in Cloud Manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2020, 33(7): 701-715. |
| 7 | Ahn Gilseung, Sun Hur. Multiobjective Real-time Scheduling of Tasks in Cloud Manufacturing with Genetic Algorithm[J]. Mathematical Problems in Engineering, 2021, 2021: 1305849. |
| 8 | Zhang Shuai, Xu Yangbing, Zhang Wenyu, et al. A New Fuzzy QoS-aware Manufacture Service Composition Method Using Extended Flower Pollination Algorithm[J]. Journal of Intelligent Manufacturing, 2019, 30(5): 2069-2083. |
| 9 | Simeone Alessandro, Caggiano Alessandra, Deng Bin, et al. A Deep Learning Based-decision Support Tool for Solution Recommendation in Cloud Manufacturing Platforms[J]. Procedia CIRP, 2019, 86: 68-73. |
| 10 | Si Wen, Qin Bingyang, Li Qingquan, et al. A Novel Adaptive Wavelet Threshold Estimation Based on Hybrid Particle Swarm Optimization for Partial Discharge Signal Denoising[J]. Optik, 2019, 181: 175-184. |
| 11 | Carlucci Daniela, Renna Paolo, Materi Sergio, et al. Intelligent Decision-making Model Based on Minority Game for Resource Allocation in Cloud Manufacturing[J]. Management Decision, 2020, 58(11): 2305-2325. |
| 12 | Chen Jian, Huang G Q, Wang Junqiang, et al. A Cooperative Approach to Service Booking and Scheduling in Cloud Manufacturing[J]. European Journal of Operational Research, 2019, 273(3): 861-873. |
| 13 | Liu Zhaohui, Wang Zhongjie. A Novel Truthful and Fair Resource Bidding Mechanism for Cloud Manufacturing[J]. IEEE Access, 2020, 8: 28888-28901. |
| 14 | Li Tao, Shahidehpour M. Strategic Bidding of Transmission-constrained GENCOs with Incomplete Information[J]. IEEE Transactions on Power Systems, 2005, 20(1): 437-447. |
| 15 | Aghamohammadzadeh Ehsan, Omid Fatahi Valilai. A Novel Cloud Manufacturing Service Composition Platform Enabled by Blockchain Technology[J]. International Journal of Production Research, 2020, 58(17): 5280-5298. |
| 16 | 黄宇, 吴思橙, 徐璟, 等. 不完全信息下计及环境成本的多能源集线器博弈优化调度[J]. 电力系统自动化, 2022, 46(20): 109-118. |
| Huang Yu, Wu Sicheng, Xu Jing, et al. Game Optimal Scheduling Among Multiple Energy Hubs Considering Environmental Cost with Incomplete Information[J]. Automation of Electric Power Systems, 2022, 46(20): 109-118. | |
| 17 | 张维迎. 博弈论与信息经济学[M]. 上海: 格致出版社, 2012. |
| 18 | 罗云峰. 博弈论教程[M]. 北京: 清华大学出版社, 2007. |
| Luo Yunfeng. Game Theory[M]. Beijing: Tsinghua University Press, 2007. | |
| 19 | Li Li, Wang Wanliang, Li Weikun, et al. A Novel Ranking-based Optimal Guides Selection Strategy in MOPSO[J]. Procedia Computer Science, 2016, 91: 1001-1010. |
| 20 | Eberhart R C, Shi Yuhui. Particle Swarm Optimization: Developments, Applications and Resources[C]//Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2001: 81-86. |
| 21 | 胡建秀, 曾建潮. 具有随机惯性权重的PSO算法[J]. 计算机仿真, 2006, 23(8): 164-167. |
| Hu Jianxiu, Zeng Jianchao. A Particle Swarm Optimization Model with Stochastic Inertia Weight[J]. Computer Simulation, 2006, 23(8): 164-167. | |
| 22 | 张迅, 王平, 邢建春, 等. 基于高斯函数递减惯性权重的粒子群优化算法[J]. 计算机应用研究, 2012, 29(10): 3710-3712, 3724. |
| Zhang Xun, Wang Ping, Xing Jianchun, et al. Particle Swarm Optimization Algorithms with Decreasing Inertia Weight Based on Gaussian Function[J]. Application Research of Computers, 2012, 29(10): 3710-3712, 3724. | |
| 23 | Gyani Jayadev, Ahmed Ahsan, Mohd Anul Haq. MCDM and Various Prioritization Methods in AHP for CSS: A Comprehensive Review[J]. IEEE Access, 2022, 10: 33492-33511. |
| 24 | 石翠翠, 刘媛华, 陈昕. 基于粒子群算法优化支持向量回归的水质预测模型[J]. 信息与控制, 2022, 51(3): 307-317. |
| Shi Cuicui, Liu Yuanhua, Chen Xin. Water Quality Prediction Model Based on Particle Swarm Optimization Support Vector Regression[J]. Information and Control, 2022, 51(3): 307-317. |
| [1] | 王琳煊, 刘永奎, 张霖, 林廷宇, 王力翚. 基于Anylogic的云制造平台-企业协同调度仿真系统[J]. 系统仿真学报, 2025, 37(9): 2225-2241. |
| [2] | 郭荣玉, 李孝斌, 江沛, 李传江, 刘善慧, 马军. 工业软件平台多模式运营利益分配优化模型与仿真[J]. 系统仿真学报, 2025, 37(9): 2242-2257. |
| [3] | 于仲安, 肖宏亮, 夏强威, 刘佳伟. 基于V2G模式下电动汽车参与的微电网优化调度仿真研究[J]. 系统仿真学报, 2025, 37(6): 1412-1426. |
| [4] | 谷学强, 罗俊仁, 周棪忠, 张万鹏. 智能博弈决策大模型智能体技术综述[J]. 系统仿真学报, 2025, 37(5): 1142-1157. |
| [5] | 姚昌华, 毕珊宁, 马茹飞, 余晓晗, 李家强, 陈金立. 兵棋智能体兵力协同动态联盟形成方法[J]. 系统仿真学报, 2025, 37(5): 1188-1196. |
| [6] | 赵慧瑾, 陈彧. 基于矩阵博弈的智能水声对抗建模与仿真[J]. 系统仿真学报, 2025, 37(5): 1329-1342. |
| [7] | 王蕊, 李向阳, 王栋, 马红光, 张志利. 基于认知偏差的雷达对抗建模方法研究[J]. 系统仿真学报, 2025, 37(4): 1090-1101. |
| [8] | 苏炯铭, 罗俊仁, 陈少飞. 智能博弈决策策略求解新视角实证分析[J]. 系统仿真学报, 2025, 37(2): 345-361. |
| [9] | 姜嘉成, 贾政轩, 徐钊, 林廷宇, 赵芃芃, 欧一鸣. 基于博弈对抗复杂系统的决策建模与求解[J]. 系统仿真学报, 2025, 37(1): 66-78. |
| [10] | 刘卫亮, 闫倩文, 张启亮, 刘帅, 刘长良, 康佳垚, 王昕. 基于虚拟电厂区间主从博弈的车网互动优化调度[J]. 系统仿真学报, 2024, 36(7): 1559-1572. |
| [11] | 梁晓龙, 杨爱武, 张佳强, 侯岳奇, 王宁, 黄骁, 龚俊斌. 无人集群博弈对抗系统仿真验证及决策关键技术综述[J]. 系统仿真学报, 2024, 36(4): 805-816. |
| [12] | 马苗苗, 王浩, 董利鹏, 刘向杰. 基于主从博弈的微电网分布式能量管理策略[J]. 系统仿真学报, 2024, 36(4): 834-843. |
| [13] | 张国辉, 高昂, 张雅楠. 基于RLoMAG+EAS的同构集群装备体系作战效能评估方法[J]. 系统仿真学报, 2024, 36(1): 160-169. |
| [14] | 程洁, 郑远, 李诚龙, 江波. 面向超低空物流场景的多机协同航迹规划算法[J]. 系统仿真学报, 2024, 36(1): 50-66. |
| [15] | 罗俊仁, 张万鹏, 项凤涛, 蒋超远, 陈璟. 智能推演综述:博弈论视角下的战术战役兵棋与战略博弈[J]. 系统仿真学报, 2023, 35(9): 1871-1894. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||