系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 1951-1964.doi: 10.16182/j.issn1004731x.joss.25-0373

• 专栏:数字试验与测试技术发展与展望 • 上一篇    

基于探测参数的海上目标识别场景生成方法

润雨瑄1,2, 杨德真1,2, 刘烨炀1,2, 邓伟3, 邢翔宇3, 任羿1,2   

  1. 1.可靠性与环境工程技术全国重点实验室,北京 100191
    2.北京航空航天大学 可靠性与系统工程学院,北京 100191
    3.中国航空工业集团公司 成都飞机设计研究所,四川 成都 610000
  • 收稿日期:2025-04-30 修回日期:2025-07-06 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 刘烨炀
  • 第一作者简介:润雨瑄(2001-),女,硕士生,研究方向为智能复杂系统可靠性。

Scene Generation Method for Maritime Target Recognition Based on Detection Parameters

Run Yuxuan1,2, Yang Dezhen1,2, Liu Yeyang1,2, Deng Wei3, Xing Xiangyu3, Ren Yi1,2   

  1. 1.National Key Laboratory of Reliability and Environmental Engineering, Beijing 100191, China
    2.School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
    3.Chengdu Institute of Aircraft Design, Aviation Industry Corporation of China, Chengdu 610000, China
  • Received:2025-04-30 Revised:2025-07-06 Online:2025-08-20 Published:2025-08-26
  • Contact: Liu Yeyang

摘要:

为解决传统海上目标识别场景生成方法仅考虑了不同环境对所生成场景数据的影响,而忽略了传感器探测参数带来的海上目标识别场景信息变化,使生成的场景缺乏准确性和真实性,提出了一种基于探测参数的海上目标识别场景生成方法。面向海上目标识别任务,分析影响场景生成质量的关键探测参数和场景中的关键场景特征;提出一种基于贝叶斯网络的关联关系建模方法,构建场景特征和探测参数间的映射关系模型,并通过敏感性分析揭示影响探测参数要素的关键场景特征;提出了基于DeepFillv2与泊松融合的场景生成方法,结合得到的关键场景特征,实现了不同探测参数条件下的场景增广。仿真实验验证了所提方法的有效性。

关键词: 探测参数, 场景生成, 贝叶斯网络, 场景特征, 敏感性分析, 泊松融合

Abstract:

Traditional scene generation methods for maritime target recognition consider only the effects of different environments on the generated scene data, while overlooking the changes in scene information caused by sensor detection parameters, resulting in a lack of accuracy and authenticity in generated scenes. To address this issue, a detection parameter-based scene generation method for maritime target recognition was proposed. For the task of maritime target recognition, key detection parameters affecting scene generation quality and essential scene features were analyzed. An association relationship modeling method based on Bayesian networks was proposed to construct a mapping relationship model between scene features and detection parameters. The key scene features affecting detection parameter elements were revealed through sensitivity analysis. Furthermore, a scene generation method based on DeepFillv2 and Poisson blending was proposed, which, combined with the obtained key scene features, realized scene augmentation under different detection parameters. Simulation experiments have verified the effectiveness of the proposed method.

Key words: detection parameter, scene generation, Bayesian network, scene feature, sensitivity analysis, Poisson blending

中图分类号: