系统仿真学报 ›› 2023, Vol. 35 ›› Issue (6): 1278-1289.doi: 10.16182/j.issn1004731x.joss.22-0192

• 论文 • 上一篇    下一篇

基于协同博弈粒子群算法的故障指示器配置优化

王旭(), 季伟东(), 周国辉   

  1. 哈尔滨师范大学 计算机科学与信息工程学院,黑龙江 哈尔滨 150025
  • 收稿日期:2022-03-09 修回日期:2022-04-13 出版日期:2023-06-29 发布日期:2023-06-20
  • 通讯作者: 季伟东 E-mail:wx971025@l63.com;kingjwd@126.com
  • 作者简介:王旭(1997-),男,硕士生,研究方向为群体智能、自然语言处理。E⁃mail:wx971025@l63.com
  • 基金资助:
    国家自然科学基金(31971015);2021年度黑龙江省自然科学基金(LH2021F037);哈尔滨市科技局科技创新人才研究专项(2017RAQXJ050)

Fault Indicator Configuration Optimization Based on Cooperative Game Particle Swarm Algorithm

Xu Wang(), Weidong Ji(), Guohui Zhou   

  1. College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China
  • Received:2022-03-09 Revised:2022-04-13 Online:2023-06-29 Published:2023-06-20
  • Contact: Weidong Ji E-mail:wx971025@l63.com;kingjwd@126.com

摘要:

为了平衡配电网故障指示器的可靠性与经济性,提出一种多空间协同博弈粒子群算法对其进行优化。基于种群空间分组思想,将种群活动空间自适应分割,子空间中粒子博弈进化,并对粒子进行融合余弦相似反向策略的博弈计算,很好地平衡了算法的收敛性与多样性。仿真结果表明:对种群进行自适应的多空间划分有利于种群跳出局部极值,融合余弦相似反向的博弈计算有利于提升种群收敛精度,该方法具有很好的普适性和有效性。

关键词: 粒子群算法, 故障指示器, 优化配置, 博弈计算, 协同进化

Abstract:

In order to balance the reliability and economy of distribution network fault indicator, a multi-space cooperative game particle swarm optimization algorithm is proposed. Based on the idea of population space grouping, the population activity space is adaptively divided, the particle game evolution in subspace is achieved, and the game calculation of particle fusion cosine similar reverse strategy is carried out, which well balances the convergence and diversity of the algorithm. The simulation results show that the adaptive multi-space division of population is conducive to jumping out of the local extreme value, and the game calculation integrating cosine similar reverse is conducive to improving the precision of population convergence. The method has good universality and effectiveness.

Key words: PSO, fault indicator, optimal configuration, game calculation, co-calculation

中图分类号: