系统仿真学报 ›› 2022, Vol. 34 ›› Issue (1): 163-169.doi: 10.16182/j.issn1004731x.joss.20-0655
吴小龙1, 夏甫根2, 陈静1, 徐佳1
收稿日期:2020-09-03
修回日期:2020-11-16
出版日期:2022-01-18
发布日期:2022-01-14
第一作者简介:吴小龙(1994-),男,硕士生,研究方向为新能源传动系统控制。E-mail:wuxlong@2018.cqut.edu.cn
基金资助:Wu Xiaolong1, Xia Fugen2, Chen Jing1, Xu Jia1
Received:2020-09-03
Revised:2020-11-16
Online:2022-01-18
Published:2022-01-14
摘要: 动力总成控制对无人驾驶汽车的动态性能和经济性起着重要的作用。为了提高车辆在路径跟踪过程中的动力性和经济性,提出了一种基于能量最优化的路径跟踪控制策略。控制策略分为两部分,在上层控制器中使用非线性模型预测控制来计算所需要的动力参数和前轮转角。下层控制器采用基于电机能耗数值最优的方法进行设计。该方法可以确保电机一直运行在效率最优状态,并可根据电机状态动态调节无级变速器以满足车辆动力需求。仿真结果表明,控制方案具有良好的跟踪性能和节能潜力。
中图分类号:
吴小龙,夏甫根,陈静等 . 基于能量最优的无人驾驶汽车路径跟踪控制[J]. 系统仿真学报, 2022, 34(1): 163-169.
Wu Xiaolong,Xia Fugen,Chen Jing,et al . Autonomous Vehicle Path Tracking Control System Based on Energy Optimization[J]. Journal of System Simulation, 2022, 34(1): 163-169.
| [1] Barkenbus J N.Eco-driving: An Overlooked Climate Change Initiative[J]. Energy Policy (S0301-4215), 2010, 38(2): 762-769. [2] Ritschel R, Schrödel F, Hädrich J, et al.Nonlinear Model Predictive Path-Following Control for Highly Automated Driving[J]. IFAC-Papers On Line (S2405-8963), 2019, 52(8): 350-355. [3] Grigorescu S, Trasnea B, Cocias T, et al.A Survey of Deep Learning Techniques for Autonomous Driving[J]. Journal of Field Robotics (S1556-4959), 2020, 37(3): 362-386. [4] De L D A, Pereira G A S. Navigation of an Autonomous Car Using Vector Fields and the Dynamic Window Approach[J]. Journal of Control, Automation and Electrical Systems (S2195-3899), 2013, 24(1/2): 106-116. [5] Doherty K, Wang J, Englot B.Probabilistic map fusion for fast, incremental occupancy mapping with 3d hilbert maps[C]//2016 IEEE international conference on robotics and automation (ICRA). Stockholm, Sweden, IEEE 2016: 1011-1018. [6] Droeschel D, Schwarz M, Behnke S.Continuous Mapping and Localization for Autonomous Navigation in Rough Terrain Using a 3D Laser Scanner[J]. Robotics and Autonomous Systems (S0921-8890), 2017, 88: 104-115. [7] Daoud M A, Osman M, Mehrez M W, et al.Path-Following and Adjustable Driving Behavior of Autonomous Vehicles Using Dual-Objective Nonlinear MPC[C]//2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES). Cairo, Egypt, IEEE, 2019: 1-6. [8] Sajadi-Alamdari S A, Voos H, Darouach M. Nonlinear Model Predictive Control for Ecological Driver Assistance Systems in Electric Vehicles[J]. Robotics and Autonomous Systems(S0921-8890), 2019, 112: 291-303. [9] Ma F, Yang Y, Wang J, et al.Predictive Energy-Saving Optimization Based on Nonlinear Model Predictive Control for Cooperative Connected Vehicles Platoon with V2V Communication[J]. Energy(S0360-5442), 2019, 189: 116-120. [10] Sajadi-Alamdari S A, Voos H, Darouach M. Nonlinear model predictive extended eco-cruise control for battery electric vehicles[C]//2016 24th mediterranean conference on control and automation (MED). Athens, Greece, IEEE, 2016: 467-472. [11] Hofman T, Salazar M.Transmission ratio design for electric vehicles via analytical modeling and optimization[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC). Gijon: Spain, 2020: 1-6. [12] Verbruggen F, Salazar M, Pavone M, et al.Joint design and control of electric vehicle propulsion systems[C]// 2020 European Control Conference (ECC), St. Petersburg, Russia: IEEE, 2020: 1725-1731. [13] Verbruggen F J R, Rangarajan V, Hofman T. Powertrain design optimization for a battery electric heavy-duty truck[C]//2019 American Control Conference (ACC). Philadelphia, PA, USA: IEEE, 2019: 1488-1493. [14] Farag W.Complex track maneuvering using real-time MPC control for autonomous driving[J]. International Journal of Computing and Digital Systems(S2210-142X), 2020, 9(5): 909-920. [15] Gao Y, Lin T, Borrelli F, et al.Predictive Control of Autonomous Ground Vehicles with Obstacle Avoidance on Slippery Roads[C]//Dynamic Systems and Control Conference. Cambridge, Massachusetts, USA,ASME 2010, 44175: 265-272. [16] Guzzella L, Sciarretta A.Vehicle Propulsion Systems[M]. Berlin, Heidelberg, Springer-Verlag Berlin Heidelberg, 2007. [17] Mahmoudi A, Soong W L, Pellegrino G, et al.Loss Function Modeling of Efficiency Maps of Electrical Machines[J]. IEEE Transactions on Industry Applications (S2644-1241), 2017, 53(5): 4221-4231. [18] Hofman T, Salazar M.Transmission ratio design for electric vehicles via analytical modeling and optimization[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC), 2020: 1-6. [19] Zhao J.Design and Control Co-Optimization for Advanced Vehicle Propulsion Systems[D]. Paris, France Université Paris-Scalay IFP Energies Nouvelles, 2017. [20] Pourabdollah M, Murgovski N, Grauers A, et al.Optimal Sizing of a Parallel PHEV Powertrain[J]. IEEE Transactions on Vehicular Technology (S1939-9359), 2013, 62(6): 2469-2480. [21] Rawlings J B, Mayne D Q, Diehl M.Model Predictive Control: Theory, Computation, and Design[M]. Madison, WI: Nob Hill Publishing, 2017. [22] Nocedal J, Wright S.Numerical Optimization[M]. Berlin, Heidelberg ,Springer Science & Business Media, 2006. [23] Andersson J A E, Gillis J, Horn G, et al. CasADi: A Software Framework for Nonlinear Optimization and Optimal Control[J]. Mathematical Programming Computation (S1867-2949), 2019, 11(1): 1-36. [24] Wächter A, Biegler L T.On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large- Scale Nonlinear Programming[J]. Mathematical Programming (S0025-5610), 2006, 106(1): 25-57. [25] Kong J, Pfeiffer M, Schildbach G, et al.Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design[C]//2015 IEEE Intelligent Vehicles Symposium (IV), eoul, Korea (South): IEEE 2015: 1094-1099. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 伍枢珩, 刘永奎, 张霖, 肖莹莹, 王力翚. 基于改进YOLOv8的轻量级装配工件检测算法[J]. 系统仿真学报, 2025, 37(12): 3099-3111. |
| [8] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [9] | 任亮, 周泽榕, 马云峰. “货到人”系统订单拣选和分拣协同优化问题[J]. 系统仿真学报, 2025, 37(12): 3128-3139. |
| [10] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [11] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [12] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [13] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [14] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [15] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||