系统仿真学报 ›› 2021, Vol. 33 ›› Issue (2): 494-500.doi: 10.16182/j.issn1004731x.joss.19-0326
郭业才1,2, 张浩然1
收稿日期:2019-07-15
修回日期:2019-09-11
出版日期:2021-02-18
发布日期:2021-02-20
第一作者简介:郭业才(1962-),男,博士,教授,博导,研究方向为通信信号处理、自适应盲均衡技术。E-mail:guo-yecai@163.com
基金资助:Guo Yecai1,2, Zhang Haoran1
Received:2019-07-15
Revised:2019-09-11
Online:2021-02-18
Published:2021-02-20
摘要: 传统调制识别算法是基于高斯白噪声信道的,在复杂信道条件下识别性能明显下降。针对此问题,提出基于抗混淆线性判别分析A-ALDA (Anti-alias Linear Discriminant Analysis)和堆叠稀疏降噪自编码器SSDAE (Stacked Sparse Denoising Autoencoders)的调制识别算法。该算法中,A-ALDA算法将信号累积量特征重构为新的特征,这些特征具有更优的分离性能;将原始特征与新特征输入SSDAE进行分类,SSDAE具有提取关键信息和抗噪声的能力。结果表明,本文算法的识别准确率高于已有的算法;并且在有限信号长度条件下和相位、频率误差干扰情况下,识别准确率均有提高。
中图分类号:
郭业才,张浩然 . 基于改进LDA和自编码器的调制识别算法[J]. 系统仿真学报, 2021, 33(2): 494-500.
Guo Yecai,Zhang Haoran . Modulation Recognition Algorithm Based on Improved LDA and Autoencoders[J]. Journal of System Simulation, 2021, 33(2): 494-500.
| [1] Zhu Z, Nandi A K.Automatic Modulation Classification: Principles, Algorithms and Applications[M]. New York: John Wiley & Sons, 2015. [2] Abdelmutalab A, Assaleh K, El-Tarhuni M.Automatic Modulation Classification based on High Order Cumulants and Hierarchical Polynomial Classifiers[J]. Physical Communication (S1874-4907), 2016, 21(12): 10-18. [3] Zhu X, Lin Y, Dou Z.Automatic Recognition of Communication Signal Modulation based on Neural Network[C]// 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). Harbin: IEEE, 2016: 223-226. [4] Lü J, Zhang L, Teng X.A Modulation Classification based on SVM[C]// 2016 15th International Conference on Optical Communications and Networks(ICOCN), Hangzhou: IEEE, 2016: 1-3. [5] Zhu Z, Aslam M W, Nandi A K.Genetic Algorithm Optimized Distribution Sampling Test for M-QAM Modulation Classification[J]. Signal Processing (S1687-4811), 2014, 94: 264-277. [6] Mughal M O, Kim S.Signal Classification and Jamming Detection in Wide-band Radios Using Naïve Bayes Classifier[J]. IEEE Communications Letters (S1089-7798), 2018, 22(7): 1398-1401. [7] Kim B, Kim J, Chae H, et al.Deep Neural Network-based Automatic Modulation Classification Technique[C]// Information and Communication Technology Convergence (ICTC), 2016 International Conference. Jeju: IEEE, 2016: 579-582. [8] Li J, Qi L, Lin Y.Research on Modulation Identification of Digital Signals based on Deep Learning[C]// Electronic Information and Communication Technology (ICEICT), IEEE International Conference. Harbin: IEEE, 2016: 402-405. [9] Ali A, Yangyu F.Automatic Modulation Classification Using Deep Learning based on Sparse Autoencoders with Nonnegativity Constraints[J]. IEEE Signal Processing Letters (S1070-9908), 2017, 24(11): 1626-1630. [10] Hussain A, Sohail M F, Alam S, et al.Classification of M-QAM and M-PSK Signals Using Genetic Programming (GP)[J]. Neural Computing and Applications (S0941-0643), 2018, 3433(1): 1-9. [11] Ali A, Yangyu F.Automatic Modulation Classification Using Principle Composition Analysis based Features Selection[C]. Computing Conference. London: IEEE, 2017: 294-296. [12] Wen J, Fang X, Cui J, et al.Robust Sparse Linear Discriminant Analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology (S1051-8215), 2018, 29(2): 390-403. [13] Aranganayagi S, Thangavel K.Clustering Categorical Data Using Silhouette Coefficient as a Relocating Measure[C]// Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference. Sivakasi: IEEE, 2007, 2: 13-17. [14] Atlas R S, Overall J E.Comparative Evaluation of Two Superior Stopping Rules for Hierarchical Cluster Analysis[J]. Psychometrika (S0033-3123), 1994, 59(4): 581-591. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 伍枢珩, 刘永奎, 张霖, 肖莹莹, 王力翚. 基于改进YOLOv8的轻量级装配工件检测算法[J]. 系统仿真学报, 2025, 37(12): 3099-3111. |
| [8] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [9] | 任亮, 周泽榕, 马云峰. “货到人”系统订单拣选和分拣协同优化问题[J]. 系统仿真学报, 2025, 37(12): 3128-3139. |
| [10] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [11] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [12] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [13] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [14] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [15] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||