Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (10): 2314-2329.doi: 10.16182/j.issn1004731x.joss.23-0694
• Papers • Previous Articles
Xu Yigang1, Chen Yong1,2, Wang Chen1,2,3, Peng Yunxian4
Received:
2023-06-06
Revised:
2023-08-28
Online:
2024-10-15
Published:
2024-10-18
Contact:
Chen Yong
CLC Number:
Xu Yigang, Chen Yong, Wang Chen, Peng Yunxian. Improving NSGA-III Algorithm for Solving High-dimensional Many-objective Green Flexible Job Shop Scheduling Problem[J]. Journal of System Simulation, 2024, 36(10): 2314-2329.
Table 2
Comparison of Results for Test Cases MK01 to MK10
算例 (n×m) | 目标 函数 | NSGA-III-TV | NSGA-II | NSGA-III | NIGA[ |
---|---|---|---|---|---|
MK01 (10×6) | 132.84 | 165.23 | 162.77 | — | |
42 | 44 | 42 | 40 | ||
156 | 159 | 164 | 165 | ||
0 | 0 | 0 | — | ||
MK02 (10×6) | 120.46 | 137.72 | 148.63 | — | |
28 | 31 | 29 | 28 | ||
141 | 155 | 148 | 146 | ||
0 | 0 | 0 | — | ||
MK03 (15×8) | 519.86 | 580.60 | 581.57 | — | |
204 | 204 | 204 | 204 | ||
817 | 909 | 882 | 861 | ||
0 | 28 | 22 | — | ||
MK04 (15×8) | 264.06 | 276.19 | 274.74 | — | |
70 | 78 | 74 | 65 | ||
344 | 347 | 349 | 354 | ||
0 | 5 | 0 | — | ||
MK05 (15×4) | 441.54 | 446 | 446.87 | — | |
180 | 193 | 183 | 177 | ||
672 | 676 | 678 | 682 | ||
805 | 874 | 763 | — | ||
MK06 (10×15) | 385.25 | 406.96 | 402.28 | — | |
75 | 85 | 80 | 72 | ||
369 | 410 | 371 | 375 | ||
0 | 0 | 0 | — | ||
MK07 (20×5) | 403.88 | 420.68 | 419.04 | — | |
150 | 154 | 148 | 145 | ||
645 | 686 | 662 | 683 | ||
359 | 401 | 344 | — | ||
MK08 (20×10) | 1 255.75 | 1 293.16 | 1 283 | — | |
523 | 551 | 524 | 523 | ||
2 512 | 2 531 | 2 544 | 2 524 | ||
2 775 | 3 133 | 2 898 | — | ||
MK09 (20×10) | 1 157.22 | 1 150.7 | 1 127.6 | — | |
359 | 368 | 346 | 322 | ||
2 264 | 2 352 | 2 352 | 2 275 | ||
131 | 392 | 162 | — | ||
MK10 (20×15) | 964.68 | 1 019.02 | 997.28 | — | |
286 | 296 | 276 | 232 | ||
1 862 | 1 996 | 1 918 | 1 933 | ||
0 | 0 | 0 | — |
Table 3
Comparison of HV values for algorithm solutions on test cases MK01 to MK10
算例 | NSGA-III-TV | NSGA-II | NSGA-III |
---|---|---|---|
MK01 | 0.004 714 3 | 0.001 221 0 | 0.003 376 7 |
MK02 | 0.005 628 3 | 0.001 593 5 | 0.006 716 0 |
MK03 | 0.004 730 7 | 0.000 941 3 | 0.004 175 5 |
MK04 | 0.007 508 0 | 0.002 501 3 | 0.006 389 0 |
MK05 | 0.002 045 0 | 0.000 214 0 | 0.001 228 0 |
MK06 | 0.010 528 0 | 0.001 351 0 | 0.005 678 0 |
MK07 | 0.003 179 0 | 0.000 604 3 | 0.003 127 8 |
MK08 | 0.001 012 3 | 0.000 255 3 | 0.000 414 5 |
MK09 | 0.006 197 7 | 0.000 203 0 | 0.003 002 5 |
MK10 | 0.007 706 3 | 0.001 218 7 | 0.002 040 0 |
Table 4
Comparison of HV values for NSGA-III-TV and its variants on different test cases
算例 | NSGA-III-TV | NSGA-III-TA | NSGA-III-VNS |
---|---|---|---|
MK01 | 0.004 714 3 | 0.003 210 6 | 0.003 749 6 |
MK02 | 0.005 628 3 | 0.004 322 4 | 0.004 741 8 |
MK03 | 0.004 730 7 | 0.004 465 0 | 0.004 476 0 |
MK04 | 0.007 508 0 | 0.007 572 7 | 0.007 658 7 |
MK05 | 0.002 045 0 | 0.001 659 3 | 0.002 624 0 |
MK06 | 0.010 528 0 | 0.010 428 0 | 0.008 692 0 |
MK07 | 0.003 179 0 | 0.003 229 0 | 0.003 962 7 |
MK08 | 0.001 012 3 | 0.001 001 6 | 0.001 004 0 |
MK09 | 0.006 197 7 | 0.006 727 8 | 0.006 270 3 |
MK10 | 0.007 706 3 | 0.004 154 3 | 0.005 553 7 |
Table 5
Comparison of results for algorithm solutions on case study Ⅰ
算法 | [N,gen] | ||||
---|---|---|---|---|---|
NSGA-II | [100,100] | 153.11 | 78 | 366 | 0 |
[200,100] | 149.75 | 71 | 365 | 0 | |
[100,200] | 153.88 | 69 | 372 | 0 | |
NSGA-III | [100,100] | 152.63 | 74 | 363 | 0 |
[200,100] | 148.88 | 68 | 364 | 0 | |
[100,200] | 148.53 | 68 | 366 | 0 | |
NSGA-III-TV | [100,100] | 137.58 | 67 | 363 | 0 |
[200,100] | 134.77 | 68 | 362 | 0 | |
[100,200] | 136.99 | 68 | 363 | 0 | |
INSGA-II | — | 160.15 | 68 | 363 | 0 |
1 | 张朝阳, 徐莉萍, 李健, 等. 基于改进狼群算法的柔性作业车间调度研究[J]. 系统仿真学报, 2023, 35(3): 534-543. |
Zhang Chaoyang, Xu Liping, Li Jian, et al. Flexible Job-shop Scheduling Problem Based on Improved Wolf Pack Algorithm[J]. Journal of System Simulation, 2023, 35(3): 534-543. | |
2 | 张国辉, 高亮, 李培根, 等. 改进遗传算法求解柔性作业车间调度问题[J]. 机械工程学报, 2009, 45(7): 145-151. |
Zhang Guohui, Gao Liang, Li Peigen, et al. Improved Genetic Algorithm for the Flexible Job-shop Scheduling Problem[J]. Journal of Mechanical Engineering, 2009, 45(7): 145-151. | |
3 | 陈魁, 毕利. 改进粒子群算法在考虑运输时间下的FJSP研究[J]. 系统仿真学报, 2021, 33(4): 845-853. |
Chen Kui, Bi Li. Research on FJSP of Improved Particle Swarm Optimization Algorithm Considering Transportation Time[J]. Journal of System Simulation, 2021, 33(4): 845-853. | |
4 | 陈广锋, 韩玮. 基于最小负荷初始化的改进遗传算法求解柔性作业车间调度问题[J]. 信息与控制, 2021, 50(3): 374-384. |
Chen Guangfeng, Han Wei. Improved Genetic Algorithm Based on Minimum-load Initialization to Solve Flexible Job-shop Scheduing Problem[J]. Information and Control, 2021, 50(3): 374-384. | |
5 | 乔东平, 柏文通, 文笑雨, 等. 基于关联规则的作业车间调度问题改进遗传算法研究[J]. 河南理工大学学报(自然科学版), 2022, 41(2): 138-148. |
Qiao Dongping, Bai Wentong, Wen Xiaoyu, et al. Research on Improved Genetic Algorithm for Job-shop Scheduling Problem Based on Association Rules[J]. Journal of Henan Polytechnic University(Natural Science), 2022, 41(2): 138-148. | |
6 | 姜一啸, 吉卫喜, 何鑫, 等. 基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J]. 中国机械工程, 2022, 33(21): 2564-2577. |
Jiang Yixiao, Ji Weixi, He Xin, et al. Low-carbon Scheduling of Multi-objective Flexible Job-shop Based on Improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2022, 33(21): 2564-2577. | |
7 | 王家海, 李营力, 刘铮玮, 等. 柔性作业车间调度的精确邻域结构混合进化算法[J]. 同济大学学报(自然科学版), 2021, 49(3): 440-448. |
Wang Jiahai, Li Yingli, Liu Zhengwei, et al. Evolutionary Algorithm with Precise Neighborhood Structure for Flexible Workshop Scheduling[J]. Journal of Tongji University(Natural Science), 2021, 49(3): 440-448. | |
8 | 赵诗奎. 求解柔性作业车间调度问题的两级邻域搜索混合算法[J]. 机械工程学报, 2015, 51(14): 175-184. |
Zhao Shikui. Bilevel Neighborhood Search Hybrid Algorithm for the Flexible Job Shop Scheduling Problem[J]. Journal of Mechanical Engineering, 2015, 51(14): 175-184. | |
9 | 张超勇. 基于自然启发式算法的作业车间调度问题理论与应用研究[D]. 武汉: 华中科技大学, 2006. |
Zhang Chaoyong. Research on the Shop Scheduling Problem with Naturally-inspired Heuristic Algorithms[D]. Wuhan: Huazhong University of Science and Technology, 2006. | |
10 | 黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度问题的一种新邻域结构[J]. 系统工程理论与实践, 2021, 41(9): 2367-2378. |
Huang Xuewen, Chen Shaofen, Zhou Tianyu, et al. A New Neighborhood Structure for Solving the Flexible Job-shop Scheduling Problem[J]. Systems Engineering-Theory & Practice, 2021, 41(9): 2367-2378. | |
11 | 李瑞, 王凌, 龚文引. 知识驱动的模因算法求解分布式绿色柔性调度[J]. 华中科技大学学报(自然科学版), 2022, 50(6): 55-60. |
Li Rui, Wang Ling, Gong Wenyin. Knowledge-driven Memetic Algorithm for Distributed Green Flexible Job Shop Scheduling Problem[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(6): 55-60. | |
12 | 赵诗奎. 柔性作业车间调度的改进邻域结构混合算法[J]. 计算机集成制造系统, 2018, 24(12): 3060-3072. |
Zhao Shikui. Hybrid Algorithm Based on Improved Neighborhood Structure for Flexible Job Shop Scheduling[J]. Computer Integrated Manufacturing Systems, 2018, 24(12): 3060-3072. | |
13 | Jiang Huimin, Kwong C K, Park W Y, et al. A Multi-Objective PSO Approach of Mining Association Rules for Affective Design Based on Online Customer Reviews[J]. Journal of Engineering Design, 2018, 29(7): 381-403. |
14 | Tian Ye, Xiang Xiaoshu, Zhang Xingyi, et al. Sampling Reference Points on the Pareto Fronts of Benchmark Multi-objective Optimization Problems[C]//2018 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2018: 1-6. |
15 | 王秋莲, 段星皓. 基于高维多目标候鸟优化算法的柔性作业车间调度[J]. 中国机械工程, 2022, 33(21): 2601-2612. |
Wang Qiulian, Duan Xinghao. Scheduling of Flexible Job Shop Based on High-dimension and Multi-objective Migrating Bird Optimization Algorithm[J]. China Mechanical Engineering, 2022, 33(21): 2601-2612. | |
16 | 王玉芳, 葛嘉荣, 缪昇, 等. 一种求解柔性作业车间的改进遗传算法[J]. 重庆理工大学学报(自然科学), 2021, 35(9): 152-159. |
Wang Yufang, Ge Jiarong, Miao Sheng, et al. An Improve Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(9): 152-159. | |
17 | 李丹, 向凤红, 毛剑琳. 基于INSGA-Ⅱ高维目标柔性作业车间调度的优化[J]. 重庆邮电大学学报(自然科学版), 2022, 34(2): 341-348. |
Li Dan, Xiang Fenghong, Mao Jianlin. Many-objective Flexible Job Shop Scheduling Optimization Based on INSGA-Ⅱ[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2022, 34(2): 341-348. |
[1] | Tengfei Zhang, Rong Hu, Bin Qian, Lü Yang. Learning Variable Neighborhood Search Algorithm for Transportation-assembly Collaborative Optimization Problem [J]. Journal of System Simulation, 2023, 35(6): 1260-1277. |
[2] | Jiaying Yu, Hongli Zhang, Yingchao Dong. Research on No-Wait Flow Shop Scheduling Based on Discrete State Transition Algorithm [J]. Journal of System Simulation, 2023, 35(5): 1034-1045. |
[3] | Kaiqing Zhang, Qichun Ji. Research on Multi-depot Half-open Vehicle Routing Problem with Time-varying Speed [J]. Journal of System Simulation, 2022, 34(4): 836-846. |
[4] | Weiquan Wang, Ding Ding, Shuyan Cao. Hybrid Variable Neighborhood Search algorithm for the Multi-trip and Heterogeneous-fleet Electric Vehicle Routing Problem [J]. Journal of System Simulation, 2022, 34(4): 910-919. |
[5] | Mao Liheng, Deng Qing, Liu Rouni, Kong Xianglong. CPM-GA for Multi-satellite and Multi-task Simulation Scheduling [J]. Journal of System Simulation, 2021, 33(1): 205-214. |
[6] | Tian Na, Ji Zhicheng. Improved Quantum-behaved Particle Swarm Optimization for Solving Multi-objective Flexible Job-Shop Scheduling Problems [J]. Journal of System Simulation, 2015, 27(12): 2948-2957. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||