Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (1): 110-119.doi: 10.16182/j.issn1004731x.joss.23-0112
• Papers • Previous Articles
Wei Dong(), Liu Huan(), Zhang Xiaohan, Li Changkai, Sun Tianyi, Zhang Ziyou
Received:
2023-02-09
Revised:
2023-04-10
Online:
2024-01-20
Published:
2024-01-19
Contact:
Liu Huan
E-mail:dongweisut@sut.edu.cn;1121339441@qq.com
CLC Number:
Wei Dong, Liu Huan, Zhang Xiaohan, Li Changkai, Sun Tianyi, Zhang Ziyou. Multi-view Depth Estimation Based on Adaptive Space Feature Enhancement[J]. Journal of System Simulation, 2024, 36(1): 110-119.
Table 1
Improved structure of FPN
模块 | 卷积层描述 | 输出大小 |
---|---|---|
Conv0 | 3×3 8,Inplace-ABN | W×H×8 |
3×3 8, Inplace-ABN | W×H×8 | |
Conv1 | 5×5 16, s=2, Inplace-ABN | W/2×H/2×16 |
3×3 16, Inplace-ABN | W/2×H/2×16 | |
3×3 16, Inplace-ABN | W/2×H/2×16 | |
Conv2 | 5×5 32, s=2, Inplace-ABN | W/4×H/4×32 |
3×3 32, Inplace-ABN | W/4×H/4×32 | |
3×3 32, Inplace-ABN | W/4×H/4×32 | |
Out0 | Conv2, 1×1 32, Inplace-ABN | W/4×H/4×32 |
Out1 | (2*Out0, Conv1),1×1 16, Inplace-ABN | W/2×H/2×16 |
Out2 | (2*Out1, Conv0),1×1 8,Inplace-ABN | W×H×8 |
Table 3
Comparison results of different algorithms on DTU dataset (lower value is better)
算法模型 | Acc/mm | Comp/mm | Overall/mm | GPU /MB | Run-time/s |
---|---|---|---|---|---|
Gipuma [ | 0.283 | 0.873 | 0.578 | — | — |
Surfacenet[ | 0.450 | 1.040 | 0.745 | — | — |
MVSNet[ | 0.396 | 0.527 | 0.462 | 22 511 | 1.210 |
R-MVSNet[ | 0.385 | 0.459 | 0.422 | 6 915 | 1.28 |
D2HC-RMVSNet[ | 0.395 | 0.378 | 0.386 | 13 946 | 2.6 |
CasMVSNet[ | 0.325 | 0.385 | 0.355 | 9 891 | 0.492 |
HighRes-MVSNet[ | 0.354 | 0.393 | 0.373 | 1 119 | 0.10 |
EPM-RMVSNet[ | 0.468 | 0.521 | 0.495 | — | — |
AACVP-MVSNet[ | 0.357 | 1 048 | — | ||
MCV-MVSNet[ | 0.353 | 0.357 | 0.355 | 21 400 | 3.1 |
Ours | 0.287 | 0.305 |
Table 4
Comparison results of different algorithms on Tanks and Temples benchmark(higher is better)
算法模型 | Mean | Family | France | Horse | L.H | M60 | Panther | P.G. | Train |
---|---|---|---|---|---|---|---|---|---|
MVSNet[ | 43.48 | 55.99 | 28.55 | 25.07 | 50.79 | 53.96 | 50.86 | 47.90 | 34.69 |
R-MVSNet[ | 48.40 | 69.96 | 46.65 | 32.59 | 42.95 | 51.88 | 48.80 | 52.00 | 42.38 |
D2HC-RMVSNet[ | 74.69 | 56.04 | 59.61 | 60.04 | |||||
CasMVSNet[ | 56.84 | 46.26 | 55.81 | 56.11 | 4.06 | 58.18 | 49.51 | ||
HighRes-MVSNet[ | 49.81 | 66.62 | 44.17 | 30.84 | 55.13 | 53.20 | 50.32 | 55.45 | 42.73 |
Ours | 61.43 | 78.74 | 64.79 | 53.37 | 60.31 | 61.86 | 55.20 |
1 | Galliani Silvano, Lasinger Katrin, Schindler Konrad. Massively Parallel Multiview Stereopsis by Surface Normal Diffusion[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2015: 873-881. |
2 | Žbontar Jure, LeCun Y. Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches[J]. Journal of Machine Learning Research, 2016, 17(1): 2287-2318. |
3 | Luo Wenjie, Schwing Alexander G, Urtasun Raquel. Efficient Deep Learning for Stereo Matching[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 5695-5703. |
4 | Kendall A, Martirosyan H, Dasgupta S, et al. End-to-end Learning of Geometry and Context for Deep Stereo Regression[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 66-75. |
5 | Ji Mengqi, Gall Juergen, Zheng Haitian, et al. SurfaceNet: An End-to-end 3D Neural Network for Multiview Stereopsis[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2326-2334. |
6 | Kar A, Häne Christian, Malik J. Learning a Multi-view Stereo Machine[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 364-375. |
7 | Yao Yao, Luo Zixin, Li Shiwei, et al. MVSNet: Depth Inference for Unstructured Multi-view Stereo[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 785-801. |
8 | Yao Yao, Luo Zixin, Li Shiwei, et al. Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 5520-5529. |
9 | Yan Jianfeng, Wei Zizhuang, Yi Hongwei, et al. Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency Checking[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 674-689. |
10 | Gu Xiaodong, Fan Zhiwen, Zhu Siyu, et al. Cascade Cost Volume for High-resolution Multi-view Stereo and Stereo Matching[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 2492-2501. |
11 | Weilharter Rafael, Fraundorfer Friedrich. HighRes-MVSNet: A Fast Multi-view Stereo Network for Dense 3D Reconstruction from High-resolution Images[J]. IEEE Access, 2021, 9: 11306-11315. |
12 | 叶春凯, 万旺根. 基于特征金字塔网络的多视图深度估计[J]. 电子测量技术, 2020, 43(11): 91-95. |
Ye Chunkai, Wan Wanggen. Feature Pyramid Network for Multi-view Depth Estimation[J]. Electronic Measurement Technology, 2020, 43(11): 91-95. | |
13 | Yu Anzhu, Guo Wenyue, Liu Bing, et al. Attention Aware Cost Volume Pyramid Based Multi-view Stereo Network for 3D Reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 448-460. |
14 | 刘万军, 王俊恺, 曲海成. 多尺度代价体信息共享的多视角立体重建网络[J]. 中国图象图形学报, 2022, 27(11): 3331-3342. |
Liu Wanjun, Wang Junkai, Qu Haicheng. Multi-scale Cost Volumes Information Sharing Based Multi-view Stereo Reconstructed Model[J]. Journal of Image and Graphics, 2022, 27(11): 3331-3342. | |
15 | Lin T Y, Dollár Piotr, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 936-944. |
16 | Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
17 | Samuel Rota Bulò, Porzi Lorenzo, Kontschieder Peter. In-place Activated BatchNorm for Memory-optimized Training of DNNs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 5639-5647. |
18 | Dai Jifeng, Qi Haozhi, Xiong Yuwen, et al. Deformable Convolutional Networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 764-773. |
19 | Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13708-13717. |
20 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
21 | Xu Ning, Price B, Cohen S, et al. Deep Image Matting[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 311-320. |
22 | Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2999-3007. |
23 | Aanæs H, Jensen R R, Vogiatzis G, et al. Large-scale Data for Multiple-view Stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168. |
24 | Knapitsch A, Park J, Zhou Qianyi, et al. Tanks and Temples: Benchmarking Large-scale Scene Reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 78. |
25 | Seitz S M, Curless B, Diebel J, et al. A Comparison and Evaluation of Multi-view Stereo Reconstruction Algorithms[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Piscataway, NJ, USA: IEEE, 2006: 519-528. |
[1] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
[2] | Chen Yuanyuan, Huai Yongjian, Nie Xiaoying, Lang Ke. 3D Garment Collision Simulation Based on Human Skeletal Features [J]. Journal of System Simulation, 2023, 35(9): 2023-2034. |
[3] | Benyue Su, Manzhen Sun, Qing Ma, Min Sheng. Action Recognition Method Based on Projection Subspace Views under Single Viewing Angle [J]. Journal of System Simulation, 2023, 35(5): 1098-1108. |
[4] | Yecai Guo, Cheng Liu. Adaptive Correction Tracking Algorithm Based on Detector and Locator Fusion [J]. Journal of System Simulation, 2023, 35(4): 709-720. |
[5] | Na Ma, Tingxin Wen, Xu Jia, Xiaohui Li. Cross-domain Text Sentiment Classification Based on Auxiliary Classification Networks [J]. Journal of System Simulation, 2023, 35(4): 721-733. |
[6] | Benyue Su, Li Zhang, Qingxuan He, Min Sheng. Short-time Human Activity Recognition Based on Wavelet Features Matching [J]. Journal of System Simulation, 2023, 35(1): 158-168. |
[7] | Zhihao Zhu, Yan Wang, Zhicheng Ji. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression [J]. Journal of System Simulation, 2022, 34(12): 2575-2583. |
[8] | Yaru Wang, Kai Yang, Yongjie Zhai, Congbin Guo, Wenqing Zhao, Jie Su. Transmission Line Insulator Recognition Based on Artificial Images Data Expansion [J]. Journal of System Simulation, 2022, 34(11): 2337-2347. |
[9] | Wei Zhou, Yuxiang Liu, Guangping Liao, Xin Ma. Siamese Object Tracking Algorithm Combined with the Intersection over Union Loss [J]. Journal of System Simulation, 2022, 34(09): 1956-1967. |
[10] | Sixian Zhang, Yi Yang, Meng Zhang, Pengbo Mi. An Efficient Tracker via Multi-feature Adaptive Correlation Filter [J]. Journal of System Simulation, 2022, 34(8): 1864-1873. |
[11] | Ziying Zhang, Hua Zhou. Research on Inpainting Algorithm of Digital Murals Based on Enhanced Structural Information [J]. Journal of System Simulation, 2022, 34(7): 1524-1531. |
[12] | Jintai Shangguan, Yawen Dang, Wei Lian. A Modified Point Matching Method for Non-Rigid Image Registration [J]. Journal of System Simulation, 2022, 34(7): 1482-1489. |
[13] | Peipei Zhou, Xinglin Hou. An Unsupervised Deep Neural Network for Image Fusion [J]. Journal of System Simulation, 2022, 34(6): 1267-1274. |
[14] | Jianfang Cao, Yiming Jia, Minmin Yan, Xiaodong Tian. Murals Super-resolution Reconstruction with the Stable Enhanced Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(5): 1076-1089. |
[15] | Kaituan Feng, Jie Yuan. Research on Discrete Workshop Task Assignment Based on Improved Water Filling Algorithm [J]. Journal of System Simulation, 2022, 34(4): 768-776. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||