Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (3): 515-524.doi: 10.16182/j.issn1004731x.joss.21-1188
• Papers • Previous Articles Next Articles
Chuandong Qin1,2(
), Baosheng Li1(
), Baole Han1
Received:2021-11-18
Revised:2022-01-06
Online:2023-03-30
Published:2023-03-22
Contact:
Baosheng Li
E-mail:qinchuandong123@163.com;daishuli163@163.com
CLC Number:
Chuandong Qin, Baosheng Li, Baole Han. Multi-strategy Hybrid ABC for Microarray High-Dimensional Feature Selection[J]. Journal of System Simulation, 2023, 35(3): 515-524.
Table 3
Comparison with ABC and its improved algorithms
| 数据集 | 指标 | ABC | GABC | CABC | EABC | COABC | MSHABC-FS | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
| GLI | 1 | 10 959 | 106.1 | 11 100 | 142.1 | 10 580 | 70.8 | 10 969 | 57.23 | 10 660 | 71.8 | 734.4 | 222.2 |
| 2 | 0.198 | 0.016 | 0.206 | 0.019 | 0.214 | 0.011 | 0.228 | 0.012 | 0.023 | 0.212 | 0.013 | 0.003 | |
| 3 | 98.24 | 0.028 | 87.65 | 0.065 | 94.71 | 0.019 | 93.53 | 0.018 | 95.29 | 0.037 | 100 | 0 | |
| 4 | 25.77 | 0.075 | 43.29 | 0.336 | 23.55 | 0.095 | 296.22 | 1.299 | 23.50 | 0.115 | 31.10 | 0.27 | |
| GLA-BRA | 1 | 24 367.6 | 159.7 | 24 483.8 | 125.1 | 23 687.8 | 186.2 | 24 362.2 | 153.8 | 23 884.8 | 85.45 | 1 628 | 705.8 |
| 2 | 0.292 | 0.001 | 0.302 | 0.009 | 0.304 | 0.010 | 0.312 9 | 0.008 | 0.302 | 0.008 | 0.123 | 0.014 | |
| 3 | 83.33 | 0 | 78.33 | 0.030 | 80.56 | 0.019 | 80.00 | 0.012 | 81.11 | 0.012 | 82.22 | 0.025 | |
| 4 | 102.32 | 0.31 | 142.49 | 0.85 | 93.81 | 0.57 | 688.39 | 1.907 | 94.58 | 0.458 | 79.72 | 3.11 | |
| CLL-SUB | 1 | 5 545.6 | 37.5 | 5 620.6 | 57.46 | 5 301.2 | 50.2 | 5 569.2 | 49.33 | 5 353.9 | 44.03 | 666.9 | 424.7 |
| 2 | 0.327 | 0.001 | 0.328 | 0.002 | 0.319 | 0.013 | 0.348 | 0.019 | 0.329 | 0.019 | 0.140 | 0.032 | |
| 3 | 77.27 | 0 | 65.91 | 0.096 | 77.27 | 0.021 | 74.09 | 0.031 | 75.91 | 0.307 | 80.91 | 0.036 | |
| 4 | 19.03 | 0.099 | 28.04 | 0.105 | 17.23 | 0.109 | 156.57 | 1.093 | 17.45 | 0.128 | 20.02 | 0.433 | |
| TOX | 1 | 2 854.7 | 36.7 | 2 866.7 | 32.43 | 2 658.6 | 56.68 | 2 833 | 46.41 | 2 691 | 26.85 | 284.4 | 136.45 |
| 2 | 0.328 | 0.009 | 0.341 | 0.018 | 0.333 | 0.022 | 0.363 | 0.023 | 0.310 | 0.032 | 0.126 | 0.011 | |
| 3 | 77.65 | 0.015 | 59.12 | 0.058 | 74.71 | 0.034 | 71.76 | 0.037 | 78.82 | 0.051 | 82.65 | 0.017 | |
| 4 | 17.66 | 0.227 | 22.62 | 0.152 | 16.101 | 0.240 | 88.17 | 0.934 | 15.81 | 0.068 | 14.75 | 0.314 | |
| SMK-CAN | 1 | 9 889.5 | 102.4 | 9 401.4 | 58.4 | 9 569.7 | 58.2 | 9 871.8 | 62.1 | 9 550.4 | 87.0 | 857.1 | 317.33 |
| 2 | 0.327 | 0.007 | 0.323 | 0.016 | 0.323 | 0.014 | 0.332 | 0.008 | 0.329 | 0.006 | 0.108 | 0.012 | |
| 3 | 77.57 | 0.013 | 76.76 | 0.024 | 77.30 | 0.023 | 76.76 | 0.015 | 76.22 | 0.012 | 85.14 | 0.019 | |
| 4 | 48.27 | 0.147 | 44.32 | 0.196 | 43.82 | 0.165 | 287.09 | 1.029 | 43.93 | 0.249 | 37.19 | 0.862 | |
Table 4
Comparison with other algorithms
| 数据集 | 指标 | SSA | ASO | PFA | BOA | GWO | MSHABC-FS | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | std | Mean | std | Mean | std | Mean | std | Mean | std | Mean | std | ||
| GLI | 1 | 10 992 | 50.1 | 10 677 | 120.4 | 11 013 | 115.2 | 3 810.9 | 754.7 | 2 658.1 | 336.1 | 734.4 | 222.2 |
| 2 | 0.212 | 0.017 | 0.205 | 0.017 | 0.203 | 0.017 | 0.076 | 0.013 | 0.046 | 0.006 | 0.013 | 0.003 | |
| 3 | 95.88 | 0.03 | 96.47 | 0.03 | 97.65 | 0.03 | 98.24 | 0.028 | 100 | 0 | 100 | 0 | |
| 4 | 23.43 | 0.07 | 30.73 | 0.39 | 26.26 | 0.08 | 18.04 | 0.13 | 18.05 | 0.63 | 31.10 | 0.27 | |
| GLA-BRA | 1 | 24 347.6 | 121.9 | 23 875.2 | 227.9 | 24 396.2 | 132.1 | 6 577.2 | 1 382.8 | 6 184 | 524.5 | 1 628 | 705.8 |
| 2 | 0.306 | 0.007 | 0.299 | 0.008 | 0.293 | 0.001 | 0.164 | 0.006 | 0.141 | 0.009 | 0.123 | 0.014 | |
| 3 | 81.11 | 0.012 | 81.67 | 0.015 | 83.33 | 0 | 81.67 | 0.015 | 85.00 | 0.015 | 82.22 | 0.025 | |
| 4 | 94.04 | 0.26 | 98.53 | 3.96 | 100.37 | 0.37 | 65.47 | 0.393 | 52.61 | 1.61 | 79.72 | 3.11 | |
| CLL-SUB | 1 | 5 557.8 | 73.2 | 5 436.5 | 73.4 | 5 549.1 | 33.32 | 1 508.2 | 396.5 | 1 474.1 | 174.5 | 666.9 | 424.7 |
| 2 | 0.339 | 0.013 | 0.324 | 0.003 | 0.327 | 0.001 | 0.211 | 0.019 | 0.159 | 0.015 | 0.140 | 0.032 | |
| 3 | 75.45 | 0.023 | 77.27 | 0 | 77.27 | 0 | 74.09 | 0.037 | 82.27 | 0.026 | 80.91 | 0.036 | |
| 4 | 17.19 | 0.120 | 21.18 | 0.597 | 18.58 | 0.047 | 13.04 | 0.082 | 13.34 | 0.345 | 20.02 | 0.433 | |
| TOX | 1 | 2 826.3 | 33.4 | 2 769.8 | 54.99 | 2 838.3 | 20.29 | 705.4 | 113.6 | 965.6 | 117.8 | 284.4 | 136.45 |
| 2 | 0.344 | 0.016 | 0.302 | 0.015 | 0.337 | 0.012 | 0.201 | 0.026 | 0.135 | 0.025 | 0.126 | 0.011 | |
| 3 | 74.71 | 0.030 | 80.88 | 0.025 | 75.88 | 0.019 | 75.00 | 0.044 | 88.53 | 0.039 | 82.65 | 0.017 | |
| 4 | 16.24 | 0.302 | 20.16 | 0.432 | 17.11 | 0.148 | 12.71 | 0.120 | 12.26 | 0.457 | 14.75 | 0.314 | |
| SMK-CAN | 1 | 9 867.2 | 34.24 | 9 624 | 66.2 | 9 898 | 71.9 | 2 367.8 | 208.9 | 2 923.9 | 342.7 | 857.1 | 317.33 |
| 2 | 0.347 | 0.014 | 0.322 | 0.015 | 0.326 | 0.014 | 0.192 | 0.007 | 0.123 | 0.020 | 0.108 | 0.012 | |
| 3 | 74.32 | 0.014 | 77.57 | 0.026 | 77.84 | 0.025 | 76.22 | 0.011 | 89.19 | 0.031 | 85.14 | 0.019 | |
| 4 | 44.33 | 0.010 | 42.14 | 1.601 | 47.44 | 0.054 | 31.24 | 0.217 | 27.20 | 1.395 | 37.19 | 0.862 | |
| 1 | Sun L, Zhang X, Qian Y, et al. Feature selection Using Neighborhood Entropy-Based Uncertainty Measures for Gene Expression Data Classification[J]. Information Sciences (S0020-0255), 2019, 502: 18-41. |
| 2 | Nguyen B H, Xue B, Zhang M. A Survey on Swarm Intelligence Approaches to Feature Selection in Data Mining[J]. Swarm and Evolutionary Computation (S2210-6502), 2020, 54: 100663. |
| 3 | Meyer P E, Schretter C, Bontempi G. Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity[J]. IEEE Journal of Selected Topics in Signal Processing (S1932-4553), 2008, 2(3): 261-274. |
| 4 | Guyon I, Weston J, Barnhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines[J]. Machine Learning (S1573-0565), 2002, 46(1): 389-422. |
| 5 | Lee S J, Xu Z, Li T, et al. A Novel Bagging C4. 5 Algorithm Based on Wrapper Feature Selection for Supporting Wise Clinical Decision Making[J]. Journal of Biomedical Informatics (S1532-0464), 2018, 78: 144-155. |
| 6 | 李炜, 巢秀琴. 改进的粒子群算法优化的特征选择方法[J]. 计算机科学与探索, 2019, 13(6): 990-1004. |
| Li Wei, Chao Xiuqin. Improved Particle Swarm Optimization Method for Feature Selection[J]. Frontiers of Computer Science and Technology, 2019, 13(6): 990-1004. | |
| 7 | Arslan S, Ozturk C. Multi Hive Artificial Bee Colony Programming for High Dimensional Symbolic Regression with Feature Selection[J]. Applied Soft Computing (S1568-4946), 2019, 78: 515-527. |
| 8 | Wang X, Zhang Y, Sun X, et al. Multi-objective Feature Selection Based on Artificial Bee Colony: An Acceleration Approach with Variable Sample Size[J]. Applied Soft Computing (S1568-4946), 2020, 88: 106041. |
| 9 | Rao H, Shi X, Rodrigue A K, et al. Feature Selection Based on Artificial Bee Colony and Gradient Boosting Decision Tree[J]. Applied Soft Computing (S1568-4946), 2019, 74: 634-642. |
| 10 | 张戈, 王建林. 基于混合ABC和CRO的高维特征选择方法[J]. 计算机工程与应用, 2019, 55(11): 93-101. |
| Zhang Ge, Wang Jianlin. Feature Selection of High-dimensional Data Based on ABC and CRO Algorithm[J]. Computer Engineering and Applications, 2019, 55(11): 93-101. | |
| 11 | 匡芳君, 金忠, 徐蔚鸿, 等. Tent混沌人工蜂群与粒子群混合算法[J]. 控制与决策, 2015, 30(5): 839-847. |
| Kuang Fangjun, Jin Zhong, Xu Weihong, et al. Hybridization Algorithm of Tent Chaos Artificial Bee Colony and Particle Swarm Optimization[J]. Control and Decision, 2015, 30(5): 839-847. | |
| 12 | 高卫峰, 刘三阳, 焦合华, 等. 引入人工蜂群搜索算子的粒子群算法[J]. 控制与决策, 2012, 27(6): 833-838. |
| Gao Weifeng, Liu Sanyang, Jiao Hehua, et al. Particle Swarm Optimization with Search Operator of Artificial Bee Colony Algorithm[J]. Control and Decision, 2012, 27(6): 833-838. | |
| 13 | Gao W, Liu S, Huang L. Enhancing Artificial Bee Colony Algorithm Using More Information-Based Search Equations[J]. Information Sciences (S0020-0255), 2014, 270: 112-133. |
| 14 | Abualigah L, Shehab M, Alshinwan M, et al. Salp Swarm Algorithm: A Comprehensive Survey[J]. Neural Computing and Applications (S1433-3058), 2020, 32(15): 11195-11215. |
| 15 | Zhao W, Wang L, Zhang Z. Atom Search Optimization and Iits Application to Solve a Hydrogeologic Parameter Estimation Problem[J]. Knowledge-Based Systems (S0950-7051), 2019, 163: 283-304. |
| 16 | Yapici H, Cetinkaya N. A New Meta-heuristic Optimizer: Pathfinder Algorithm[J]. Applied Soft Computing (S1568-4946), 2019, 78: 545-568. |
| 17 | Arora S, Singh S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization[J]. Soft Computing (S1433-7479), 2019, 23(3): 715-734. |
| 18 | Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software (S0965-9978), 2014, 69: 46-61. |
| 19 | Zhu G, Kwong S. Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization[J]. Applied Mathematics and Computation (S0096-3003), 2010, 217(7): 3166-3173. |
| 20 | Gao W, Liu S, Huang L. A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation and Orthogonal Learning[J]. IEEE Transactions on Cybernetics (S2168-2275), 2013, 43(3): 1011-1024. |
| 21 | Luo J, Wang Q, Xiao X. A Modified Artificial Bee Colony Algorithm Based on Converge-Onlookers Approach for Global Optimization[J]. Applied Mathematics and Computation (S0096-3003), 2013, 219(20): 10253-10262. |
| [1] | Xiong Jun, Zhang Wenbo, Xiong Zhi, Zhou Feng, Yang Bo. Survey of Cooperative Multi-Agent Path Finding [J]. Journal of System Simulation, 2025, 37(12): 3033-3049. |
| [2] | Chen Haiyang, Lin Hongkai, Ren Zhifang, Liu Jing, Zhang Jing. Bayesian Network Parameter Learning Based on AHP-DST Fusion of Expert Prior Knowledge [J]. Journal of System Simulation, 2025, 37(11): 2778-2792. |
| [3] | Guo Liqiang, Ma Liang, Zhang Hui, Yang Jing, Li Lianfeng, Zhai Yaqi. Effective Position Intelligent Decision Method Based on Model Fusion and Generative Network [J]. Journal of System Simulation, 2024, 36(7): 1573-1585. |
| [4] | Chen Jing, Zhang Zhaochong, Wang Linkai, An Mai, Wang Wei. Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network [J]. Journal of System Simulation, 2024, 36(2): 476-486. |
| [5] | Chen Haiyang, Chai Bing, Wang Ruilan, Cao Lu. Research on Approximate Reference Algorithm of SVDBN based on Sliding Window [J]. Journal of System Simulation, 2020, 32(2): 217-228. |
| [6] | Zhang Huili, Li Zhihe. A Cloud Service Composition Optimization Based on HNN [J]. Journal of System Simulation, 2019, 31(11): 2335-2343. |
| [7] | Li Qiang, Liu Xiaofeng. Cloud Job Scheduling Model Based on Improved Plant Growth Algorithm [J]. Journal of System Simulation, 2018, 30(12): 4649-4658. |
| [8] | Jia Lishan, Liu Zhe, Sun Yi. Intelligent Diagnosis of Aircraft Electrical Faults Based on RMBP Neural Network [J]. Journal of System Simulation, 2018, 30(9): 3493-3501. |
| [9] | Zhou Ying, Chen Yang, Yue Bin. Improved Model Reference Adaptive and Its Application in Grinding Process [J]. Journal of System Simulation, 2018, 30(4): 1608-1614. |
| [10] | Tang Yongbo, Xiong Yinguo. Transformer Fault Diagnosis Based on Feature Extraction of Relative Transformation Principal Component Analysis [J]. Journal of System Simulation, 2018, 30(3): 1127-1134. |
| [11] | Li Zongshuai, Chen Jing. An Autonomous Cognitive Model Simulating Basal Ganglia Mechanism [J]. Journal of System Simulation, 2018, 30(2): 427-434. |
| [12] | Chen Jing. Research on Balance Cognition Based on Multi-level Heuristic Dynamic Programming of Flexible Robot [J]. Journal of System Simulation, 2018, 30(1): 147-155. |
| [13] | Li Zongshuai, Zhang Sibo. Designing a Self-Adaptive Fuzzy PID Controller for Aircraft Cabin Temperature [J]. Journal of System Simulation, 2018, 30(11): 4395-4402. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||