Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (1): 110-122.doi: 10.16182/j.issn1004731x.joss.21-0673
• Papers • Previous Articles Next Articles
Jiawei Zhou1(), Xin Du1(
), Youcong Ni1, Hu Zhang2, Hao Zhang1, Haoran Ni3, Feng Wang4
Received:
2021-07-14
Revised:
2021-09-07
Online:
2023-01-30
Published:
2023-01-18
Contact:
Xin Du
E-mail:chenhuankeai@163.com;xindu@fjnu.edu.cn
CLC Number:
Jiawei Zhou, Xin Du, Youcong Ni, Hu Zhang, Hao Zhang, Haoran Ni, Feng Wang. Uniform Experimental Design with Constrained Region Based on Fruit Fly Algorithm[J]. Journal of System Simulation, 2023, 35(1): 110-122.
Table 3
Experimental results of MD obtained by ToPDE, ToPDEEDA and ToPFOA for solving six test instances
案例 | MD | ToPDE | ToPDEEDA | ToPFOA | 案例 | MD | ToPDE | ToPDEEDA | ToPFOA |
---|---|---|---|---|---|---|---|---|---|
G04 | mean | 0.473 693 384 | 0.471 434 981 | 0.458 114 605 | G18 | mean | 0.068 926 397 | 0.065 627 623 | 0.062 813 074 |
var | 0.000 398 391 | 0.000 260 904 | 0.000 202 883 | var | 4.818 85×10-5 | 2.142 64×10-5 | 7.525 56×10-6 | ||
G05 | mean | 0.171 966 517 | 0.147 647 930 | 0.038 632 823 | G21 | mean | 0.547 417 590 | 0.535 802 409 | 0.461 587 216 |
var | 0.004 493 037 | 0.000 902 097 | 0.000 284 999 | var | 0.002 415 406 | 0.002 045 331 | 0.001 496 419 | ||
G09 | mean | 0.410 380 148 | 0.409 266 020 | 0.387 838 683 | crash box | mean | 0.835 646 260 | 0.785 208 958 | 0.763 069 539 |
var | 0.000 181 279 | 0.000 247 658 | 0.000 109 891 | var | 0.004 479 293 | 0.002 254 649 | 0.001 140 548 |
Table 4
The statistical results of MD obtained by ToPDE, ToPDEEDA and ToPFOA for solving six test instances in first stage
案例 | MD | ToPDE | ToPDEEDA | ToPFOA | 案例 | MD | ToPDE | ToPDEEDA | ToPFOA |
---|---|---|---|---|---|---|---|---|---|
G04 | mean | 0.643 796 957 | 0.593 209 62 | 0.644 603 436 | G18 | mean | 0.078 534 486 | 0.070 202 872 | 0.069 702 378 |
var | 0.001 749 655 | 0.002 226 158 | 0.002 378 382 | var | 3.714 22×10-5 | 2.203 93×10-5 | 1.759 29×10-5 | ||
G05 | mean | 0.266 575 712 | 0.178 637 771 | 0.042 720 925 | G21 | mean | 0.761 078 093 | 0.872 306 329 | 0.774 844 110 |
var | 0.005 125 509 | 0.003 422 098 | 0.000 385 662 | var | 0.017 847 936 | 0.005 599 352 | 0.010 898 765 | ||
G09 | mean | 0.524 948 193 | 0.476 324 503 | 0.490 785 918 | crash box | mean | 1.127 537 829 | 1.115 430 175 | 0.876 021 045 |
var | 0.000 516 334 | 0.000 352 793 | 0.001 205 851 | var | 0.014 386 173 | 0.009 923 292 | 0.003 768 711 |
Table 5
The statistical results of MD obtained by ToPDE and ToPFOA for solving six test instances in second stage
案例 | MD | ToPDE | ToPDEEDA | ToPFOA | 案例 | MD | ToPDE | ToPDEEDA | ToPFOA |
---|---|---|---|---|---|---|---|---|---|
G04 | mean | 0.482 785 304 | 0.473 803 624 | 0.447 619 323 | G18 | mean | 0.068 649 945 | 0.070 952 918 | 0.063 975 721 |
var | 0.000 857 204 | 0.000 330 021 | 0.000 156 554 | var | 2.114 48×10-5 | 5.897 11×10-5 | 2.207 44×10-5 | ||
G05 | mean | 0.146 174 082 | 0.144 753 612 | 0.146 234 329 | G21 | mean | 0.561 665 230 | 0.535 954 115 | 0.484 238 243 |
var | 0.001 217 454 | 0.001 143 475 | 0.001 219 613 | var | 0.003 735 864 | 0.002 675 353 | 0.001 070 444 | ||
G09 | mean | 0.416 439 817 | 0.407 252 542 | 0.384 863 123 | crash box | mean | 0.859 704 033 | 0.763 296 718 | 0.778 463 458 |
var | 0.000 392 081 | 0.000 126 188 | 6.480 14×10-5 | var | 0.003 377 056 | 0.002 949 788 | 0.002 439 232 |
Table 6
The statistical results of MD obtained by ToPFOADE- and ToPFOA for solving six test instances in the first stage
案例 | MD | ToPFOADE- | ToPFOA | 案例 | MD | ToPFOADE- | ToPFOA |
---|---|---|---|---|---|---|---|
G04 | mean | 0.648 177 836 | 0.644 603 436 | G18 | mean | 0.069 702 378 | |
var | 0.004 919 129 | 0.002 378 382 | var | 1.759 29×10-5 | |||
G05 | mean | 0.042 720 925 | G21 | mean | 0.777 689 164 | 0.774 844 110 | |
var | 0.000 385 662 | var | 0.012 943 032 | 0.010 898 765 | |||
G09 | mean | 0.543 288 890 | 0.490 785 918 | crash box | mean | 0.876 021 045 | |
var | 0.002 236 484 | 0.001 205 851 | var | 0.003 768 711 |
Table 7
Statistical results of MD obtained by ToPFOAsingle and ToPFOAkmeans for solving six test instances in the first stage
案例 | MD | ToPFOAsingle | ToPFOAkmeans | 案例 | MD | ToPFOAsingle | ToPFOAkmeans |
---|---|---|---|---|---|---|---|
G04 | mean | 0.640 655 089 | 0.644 603 436 | G18 | mean | 0.068 864 213 | 0.068 199 763 |
var | 0.003 089 622 | 0.002 378 382 | var | 2.347 77×10-5 | 1.046 93×10-5 | ||
G05 | mean | 0.078 350 945 | 0.042 720 925 | G21 | mean | 0.726 126 017 | 0.774 844 110 |
var | 0.001 456 677 | 0.000 385 662 | var | 0.010 666 406 | 0.010 898 765 | ||
G09 | mean | 0.475 017 701 | 0.473 407 014 | crash box | mean | 0.933 369 735 | 0.876 021 045 |
var | 0.000 724 253 | 0.000 565 816 | var | 0.006 480 276 | 0.003 768 711 |
1 | Fisher R A. Design of Experiments[J]. Br Med J(S0959-8146), 1936, 1(3923): 554-554. |
2 | 张晓江. 基于计算机仿真的控制系统新型稳定性判据 [J]. 系统仿真学报, 2008, 20(13), 3468 |
-3471.Zhang Xiaojiang. New Stability Criterion of Control System Based on Computer Simulation[J]. Journal of System Simulation, 2008, 20(13): 3468-3471. | |
3 | Long T, Liu J, Wang G G, et al. Discuss on Approximate Optimization Strategies using Design of Computer Experiments and Metamodels for Flight Vehicle Design[J]. Journal of Mechanical Engineering (S0305-215X), 2016, 52(14): 79-105. |
4 | 董文永, 李元香. 演化仿真优化的并行实现及其应用[J]. 计算机学报, 2002, 25(11): 1236-1242. |
Dong Wenyong, Li Yuanxiang. Parallel Implementation and Application of Evolutionary Simulation Optimization [J].Chinese Journal of Computer Science, 2002, 25(11): 1236-1242. | |
5 | Gan N, Gu J. Hybrid Meta-model-based Design Space Exploration Method for Expensive Problems[J].Structural and Multidisciplinary Optimization(S1615-1488), 2019, 59(3): 907-917. |
6 | 于雅楠. 改善旋翼飞行体气动力参数的正交实验优化 设计[J]. 系统仿真学报, 2016, 28(3): 174-181. |
Yu Yanan. Orthogonal Test Optimization Design for Improving Aerodynamic Parameters of Rotor Flight [J]. Journal of System Simulation, 2016, 28(3): 174-181. | |
7 | Wu Z, Wang D, Okolo PN, et al. Efficient Space-filling and Near-Orthogonality Sequential Latin Hypercube for Computer Experiments[J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 2017, 324: 348-365. |
8 | Chen R B, Hsu Y W, Hung Y, et al. Discrete Particle Swarm Optimization for Constructing Uniform Design on Irregular Regions[J]. Computational Statistics & Data Analysis (S0167-9473), 2014, 72: 282-297. |
9 | Long T, Li X, Shi R, et al. Gradient-free Trust-region-based Adaptive Response Surface Method for Expensive Aircraft Optimization[J]. AIAA Journal, American Institute of Aeronautics and Astronautics (S1533-385X), 2018, 56(2): 862-873. |
10 | Akbaba H, Ozder M. Optimization and Screening of Solid Lipid Nanoparticle Production for Gene Delivery by Factorial Design and Response Surface Methodology[J]. Experimental Biomedical Research (S2618-6454), 2021, 4(1): 23-37. |
11 | Viana F A. A Tutorial on Latin Hypercube Design of Experiments. Quality and Reliability Engineering International[J]. Wiley Online Library (S1099-1638), 2016, 32(5): 1975-1985. |
12 | Sun Y, Meng X, Long T, et al. A Fast Optimal Latin Hypercube Design Method using an Improved Translational Propagation Algorithm[J]. Engineering Optimization, Taylor & Francis (S0305-215X), 2020, 52(7): 1244-1260. |
13 | Long T, Wu D, Chen X, et al. A Deterministic Sequential Maximin Latin Hypercube Design Method using Successive Local Enumeration for Metamodel-Based Optimization[J]. Engineering Optimization, Taylor & Francis (S0305-215X), 2016, 48(6): 1019-1036. |
14 | Wang Y, Xu B, Sun G, et al. A Two-phase Differential Evolution for Uniform Designs in Constrained Experimental Domains[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2017, 21(5): 665-680. |
15 | 魏佳宁, 郝昊, 常衢通, 等. 一种基于演化算法的约束区域均匀仿真实验设计方法[J]. 系统仿真学报, 2021, 33(7), 1591-1599. |
Wei Jianing, Hao Hao, Chang Qutong, et al. A Uniform Experimental Design with Constrained Region based on Evolutionary Algorithm[J]. Journal of System Simulation, 2021, 33(7), 1591-1599. | |
16 | Liang J J, Runarsson T P, Mezura-Montes E, et al. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-parameter Optimization[J]. Journal of Applied Mechanics(S0021-8936), 2006, 41(8): 8-31. |
17 | 王凌, 郑晓龙. 果蝇优化算法研究进展[J]. 控制理论与应用, 2017(5): 557-563. |
Wang Ling, Zheng Xiaolong. Advances in Fruit Fly Optimization Algorithms[J]. Control Theory & Applications, 2017(5): 557-563. | |
18 | Stokes Z, Mandal A, Wong WK. Using Differential Evolution to Design Optimal Experiments[J]. Chemometrics and Intelligent Laboratory Systems(S0169-7439), 2020, 199: 103955. |
19 | 杨俊闯, 赵超. K-means聚类算法研究综述[J]. 计算机 工程与应用, 2019, 55(23): 7-14, 63. |
Yang Junchuang, Zhao Chao. Survey on K-Means Clustering Algorithm[J]. Computer Engineering and Applications, 2019, 55(23): 7-14, 63. | |
20 | Borkowski J J, Piepel G F. Uniform Designs for Highly Constrained Mixture Experiments[J]. Journal of Quality Technology, Taylor & Francis (S0022-4065), 2009, 41(1): 35-47. |
[1] | Wei Jianing, Hao Hao, Chang Qutong, Lin Tao, Zhang Hu. Uniform Experimental Design of Constrained Region Based on Evolutionary Algorithm [J]. Journal of System Simulation, 2021, 33(7): 1591-1599. |
[2] | Dang Jianwu, Tan Ling. An Intrusion Detection Algorithm Based on IFOA and WELM [J]. Journal of System Simulation, 2021, 33(2): 331-338. |
[3] | Wang Kun, Ji Yao, Liu Peilun, Wang Li. Infrared Image Segmentation of Aircraft Skin Based on Otsu and Improved I-Ching Divination Evolutionary Algorithm [J]. Journal of System Simulation, 2021, 33(2): 421-433. |
[4] | Wang Hongfeng, Zhang Yitian, Chen Jingze. An Evolutionary Multi-Objective Simulation Optimization Algorithm for Supply Chain with Uncertain Demands [J]. Journal of System Simulation, 2021, 33(12): 2761-2770. |
[5] | Tian Hongjun, Wang Lei, Wu Qidi. MOEA/D Algorithm Based on the Hybrid Framework for Multi-objective Evolutionary Algorithm [J]. Journal of System Simulation, 2020, 32(2): 201-216. |
[6] | Zhang Qian, Xiong Ying, He Mingke, Zhang Hao. Multi-objective Model of Distribution Route Problem for Fresh Electricity Commerce under Uncertain Demand [J]. Journal of System Simulation, 2019, 31(8): 1582-1590. |
[7] | Li Rongyu, Liang Dong, Qi Guihong. Adaptive Feedback Elitist Teaching-Learning-Based Optimization Algorithm [J]. Journal of System Simulation, 2018, 30(8): 2950-2957. |
[8] | Zhang Xiaoping, Rao Shenghua, Zhang zhu, Zhao xuan. Study on Multi-objective Collaborative Optimization of Switched Reluctance Motor Based on Chaos Fruit Fly Optimization Algorithm [J]. Journal of System Simulation, 2018, 30(7): 2640-2647. |
[9] | Li Linying, Lu Rui, Li Shaohua, Jing Yu, Diao Jianhua. Online Scheduling Method of Cluster Tools with Residency Time Constraint [J]. Journal of System Simulation, 2017, 29(2): 337-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||