Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (7): 1791-1803.doi: 10.16182/j.issn1004731x.joss.25-0452
• Invited Papers • Previous Articles
Ji Zhicheng1,2, Quan Zhen1,2, Wang Yan1,2
Received:
2025-05-20
Revised:
2025-06-09
Online:
2025-07-18
Published:
2025-07-30
Contact:
Quan Zhen
CLC Number:
Ji Zhicheng, Quan Zhen, Wang Yan. Optimization and Simulation of Adaptive Production Scheduling Based on Hybrid Decision-making Mechanism[J]. Journal of System Simulation, 2025, 37(7): 1791-1803.
Table 2
HV metric results of scheduling solution sets
实例 | 规模 | HDMSA-AR | HDMSA-DR1 | HDMSA-DR2 | NSGA-II | MOEA/D | |
---|---|---|---|---|---|---|---|
MK01 | 0.67(0.01) | 0.50(0.01)( | 0.56(0.05)( | 0.68(0.01)( | 0.69(0.01)( | ||
MK02 | 0.66(0.02) | 0.48(0.02)( | 0.56(0.05)( | 0.64(0.01)( | 0.65(0.02)( | ||
MK03 | 0.67(0.01) | 0.43(0.01)( | 0.26(0.04)( | 0.56(0.01)( | 0.60(0.01)( | ||
MK04 | 0.66(0.01) | 0.50(0.01)( | 0.36(0.07)( | 0.61(0.01)( | 0.65(0.02)( | ||
MK05 | 0.58(0.01) | 0.27(0.01)( | 0.24(0.02)( | 0.45(0.02)( | 0.51(0.01)( | ||
MK06 | 0.68(0.02) | 0.50(0.04)( | 0.53(0.06)( | 0.63(0.02)( | 0.63(0.02)( | ||
MK07 | 0.56(0.02) | 0.35(0.01)( | 0.34(0.02)( | 0.52(0.01)( | 0.54(0.01)( | ||
MK08 | 0.50(0.01) | 0.26(0.01)( | 0.14(0.01)( | 0.46(0.01)( | 0.52(0.01)( | ||
MK09 | 0.65(0.01) | 0.34(0.04)( | 0.17(0.02)( | 0.52(0.01)( | 0.55(0.02)( | ||
MK10 | 0.61(0.01) | 0.38(0.03)( | 0.10(0.01)( | 0.53(0.01)( | 0.56(0.02)( | ||
MK11 | 0.47(0.01) | 0.20(0.02)( | 0.13(0.02)( | 0.43(0.01)( | 0.47(0.01)( | ||
MK12 | 0.55(0.01) | 0.26(0.01)( | 0.20(0.02)( | 0.51(0.01)( | 0.56(0.01)( | ||
MK13 | 0.62(0.01) | 0.33(0.02)( | 0.18(0.02)( | 0.53(0.01)( | 0.57(0.01)( | ||
MK14 | 0.56(0.01) | 0.21(0.03)( | 0.18(0.03)( | 0.46(0.01)( | 0.52(0.02)( | ||
MK15 | 0.66(0.01) | 0.34(0.03)( | 0.14(0.02)( | 0.57(0.02)( | 0.61(0.01)( |
Table 3
MID metric results of scheduling solution sets
实例 | 规模 | HDMSA-AR | HDMSA-DR1 | HDMSA-DR2 | NSGA-II | MOEA/D | |
---|---|---|---|---|---|---|---|
MK01 | 0.50(0.01) | 0.69(0.01)( | 0.81(0.03)( | 0.57(0.02)( | 0.64(0.02)( | ||
MK02 | 0.52(0.02) | 0.73(0.02)( | 0.81(0.07)( | 0.58(0.02)( | 0.65(0.04)( | ||
MK03 | 0.49(0.01) | 0.75(0.01)( | 1.04(0.01)( | 0.60(0.01)( | 0.58(0.01)( | ||
MK04 | 0.50(0.03) | 0.69(0.03)( | 0.93(0.05)( | 0.57(0.03)( | 0.60(0.03)( | ||
MK05 | 0.57(0.01) | 0.86(0.01)( | 1.03(0.02)( | 0.74(0.01)( | 0.75(0.01)( | ||
MK06 | 0.49(0.02) | 0.69(0.05)( | 0.83(0.03)( | 0.52(0.02)( | 0.60(0.01)( | ||
MK07 | 0.61(0.01) | 0.81(0.01)( | 1.00(0.05)( | 0.67(0.01)( | 0.77(0.04)( | ||
MK08 | 0.64(0.01) | 0.86(0.01)( | 1.14(0.01)( | 0.69(0.01)( | 0.67(0.01)( | ||
MK09 | 0.45(0.01) | 0.80(0.03)( | 1.13(0.01)( | 0.57(0.02)( | 0.61(0.02)( | ||
MK10 | 0.44(0.01) | 0.79(0.02)( | 1.15(0.03)( | 0.56(0.02)( | 0.58(0.03)( | ||
MK11 | 0.66(0.01) | 0.90(0.01)( | 1.13(0.04)( | 0.72(0.01)( | 0.73(0.01)( | ||
MK12 | 0.56(0.01) | 0.85(0.01)( | 1.07(0.02)( | 0.65(0.01)( | 0.64(0.01)( | ||
MK13 | 0.48(0.01) | 0.82(0.01)( | 1.07(0.02)( | 0.58(0.01)( | 0.61(0.01)( | ||
MK14 | 0.54(0.01) | 0.90(0.01)( | 1.11(0.02)( | 0.68(0.02)( | 0.67(0.01)( | ||
MK15 | 0.42(0.02) | 0.81(0.02)( | 1.10(0.04)( | 0.53(0.02)( | 0.54(0.02)( |
[1] | Dauzère-Pérès Stéphane, Ding Junwen, Shen Liji, et al. The Flexible Job Shop Scheduling Problem: A Review[J]. European Journal of Operational Research, 2024, 314(2): 409-432. |
[2] | Zhang Fangfang, Mei Yi, Su Nguyen, et al. Instance-rotation-based Surrogate in Genetic Programming with Brood Recombination for Dynamic Job-shop Scheduling[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1192-1206. |
[3] | Quan Zhen, Wang Yan, Liu Xiang, et al. Virtual Workflows and Adaptive Optimization Scheduling of Production Process with Feedback Constraints[J]. Engineering Applications of Artificial Intelligence, 2025, 152: 110728. |
[4] | Xu Yuanxing, Zhang Mengjian, Wang Deguang, et al. Hybrid Gaussian Quantum Particle Swarm Optimization and Adaptive Genetic Algorithm for Flexible Job-shop Scheduling Problem[J]. Engineering Applications of Artificial Intelligence, 2025, 154: 110882. |
[5] | Wang Wentao, Zhao Jing. An Enhanced Memetic Algorithm for Energy-efficient and Low-carbon Flexible Job Shop Scheduling Problem Considering Machine Restart[J]. Journal of Manufacturing Systems, 2025, 80: 457-478. |
[6] | Hou Yingjie, Liao Xiaojuan, Chen Guangzhu, et al. Co-evolutionary NSGA-III with Deep Reinforcement Learning for Multi-objective Distributed Flexible Job Shop Scheduling[J]. Computers & Industrial Engineering, 2025, 203: 110990. |
[7] | Samsuria Erlianasha, Mohd Saiful Azimi Mahmud, Norhaliza Abdul Wahab, et al. An Improved Adaptive Fuzzy-genetic Algorithm Based on Local Search for Integrated Production and Mobile Robot Scheduling in Job-shop Flexible Manufacturing System[J]. Computers & Industrial Engineering, 2025, 204: 111093. |
[8] | 田梦蝶, 贾世会, 迟晓妮, 等. 基于混沌映射的改进GA求解柔性作业车间调度[J]. 组合机床与自动化加工技术, 2025(3): 226-231. |
Tian Mengdie, Jia Shihui, Chi Xiaoni, et al. Improved GA Based on Chaotic Mapping for Flexible Job Shop Scheduling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025(3): 226-231. | |
[9] | 闫炳龙, 叶春明. 考虑工人约束的分布式柔性作业车间调度问题研究[J]. 组合机床与自动化加工技术, 2025(4): 188-194. |
Yan Binglong, Ye Chunming. Research on Distributed Flexible Job Shop Scheduling Problem Considering Worker Constraints[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025(4): 188-194. | |
[10] | 周伟, 孙瑜, 李西兴, 等. 混合遗传变邻域搜索算法求解柔性车间调度问题[J]. 计算机工程与设计, 2024, 45(7): 2041-2049. |
Zhou Wei, Sun Yu, Li Xixing, et al. Hybrid Genetic Variant Neighborhood Search Algorithm for Flexible Job-shop Scheduling Problem[J]. Computer Engineering and Design, 2024, 45(7): 2041-2049. | |
[11] | 靳思远, 彭程, 王薇, 等. 基于向量映射代理模型的分布式柔性作业车间调度算法[J]. 控制与决策, 2025, 40(5): 1561-1570. |
Jin Siyuan, Peng Cheng, Wang Wei, et al. Distributed Flexible Job Shop Scheduling Algorithm Based on Avector Mapping Surrogate Model[J]. Control and Decision, 2025, 40(5): 1561-1570. | |
[12] | 裴琦斐. 作业车间瓶颈识别与生产调度研究[D]. 徐州: 中国矿业大学, 2017. |
Pei Qifei. Study on Bottleneck Identification and Scheduling in Job Shop[D]. Xuzhou: China University of Mining and Technology, 2017. | |
[13] | Ju Zeliang, Wang Yan, Quan Zhen, et al. Bottleneck Alleviation and Scheduling Optimization of Flexible Manufacturing System Based on Information-energy Flow Model[J]. Swarm and Evolutionary Computation, 2024, 89: 101600. |
[14] | Lu Hong, Qiao Fei. An Efficient Adaptive Genetic Algorithm for Energy Saving in the Hybrid Flow Shop Scheduling with Batch Production at Last Stage[J]. Expert Systems, 2022, 39(2): e12678. |
[15] | Quan Zhen, Wang Yan, Liu Xiang, et al. Multi-objective Evolutionary Scheduling Based on Collaborative Virtual Workflow Model and Adaptive Rules for Flexible Production Process with Operation Reworking[J]. Computers & Industrial Engineering, 2024, 187: 109848. |
[16] | Zhang Fangfang, Mei Yi, Nguyen S, et al. Task Relatedness-based Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1705-1719. |
[17] | Koza J R. Genetic Programming as a Means for Programming Computers by Natural Selection[J]. Statistics and Computing, 1994, 4(2): 87-112. |
[18] | Brandimarte Paolo. Routing and Scheduling in a Flexible Job Shop by tabu Search[J]. Annals of Operations Research, 1993, 41(3): 157-183. |
[19] | Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
[20] | Zhang Qingfu, Li Hui. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. |
[21] | While L, Hingston P, Barone L, et al. A Faster Algorithm for Calculating Hypervolume[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38. |
[22] | Piroozfard Hamed, Kuan Yew Wong, Wai Peng Wong. Minimizing Total Carbon Footprint and Total Late Work Criterion in Flexible Job Shop Scheduling by Using an Improved Multi-objective Genetic Algorithm[J]. Resources Conservation and Recycling, 2018, 128: 267-283. |
[1] | Zhang Wenqiang, Wang Xiaomeng, Zhang Xiaoxiao, Zhang Guohui. Hybrid Evolutionary Multi-objective Optimization Algorithm for Vehicle Routing Problem with Simultaneous Delivery and Pickup [J]. Journal of System Simulation, 2024, 36(8): 1914-1928. |
[2] | Sun Xin, Xing Lining, Wang Rui, Wang Ling, Shi Jianmai, Luo Tianyu. Air Defense Missile Weapon Target Assignment Based on Multi-objective Evolutionary Algorithm [J]. Journal of System Simulation, 2024, 36(6): 1298-1308. |
[3] | Zhang Hu, Zhang Heng, Huang Zilu, Wang Zhe, Fu Qingpo, Peng Jin, Wang Feng. Mixed-variable Particle Swarm Optimization Algorithm Based on Competitive Coevolution [J]. Journal of System Simulation, 2024, 36(4): 844-858. |
[4] | Hongcai Ouyang, Dinghui Wu, Junyan Fan, Jing Wang. Multi-media Energy Planning Optimization of Steel Based on Improved MOEA/D [J]. Journal of System Simulation, 2023, 35(3): 568-578. |
[5] | Jiawei Zhou, Xin Du, Youcong Ni, Hu Zhang, Hao Zhang, Haoran Ni, Feng Wang. Uniform Experimental Design with Constrained Region Based on Fruit Fly Algorithm [J]. Journal of System Simulation, 2023, 35(1): 110-122. |
[6] | Wei Jianing, Hao Hao, Chang Qutong, Lin Tao, Zhang Hu. Uniform Experimental Design of Constrained Region Based on Evolutionary Algorithm [J]. Journal of System Simulation, 2021, 33(7): 1591-1599. |
[7] | Wang Kun, Ji Yao, Liu Peilun, Wang Li. Infrared Image Segmentation of Aircraft Skin Based on Otsu and Improved I-Ching Divination Evolutionary Algorithm [J]. Journal of System Simulation, 2021, 33(2): 421-433. |
[8] | Wang Hongfeng, Zhang Yitian, Chen Jingze. An Evolutionary Multi-Objective Simulation Optimization Algorithm for Supply Chain with Uncertain Demands [J]. Journal of System Simulation, 2021, 33(12): 2761-2770. |
[9] | Tian Hongjun, Wang Lei, Wu Qidi. MOEA/D Algorithm Based on the Hybrid Framework for Multi-objective Evolutionary Algorithm [J]. Journal of System Simulation, 2020, 32(2): 201-216. |
[10] | Li Rongyu, Liang Dong, Qi Guihong. Adaptive Feedback Elitist Teaching-Learning-Based Optimization Algorithm [J]. Journal of System Simulation, 2018, 30(8): 2950-2957. |
[11] | Li Linying, Lu Rui, Li Shaohua, Jing Yu, Diao Jianhua. Online Scheduling Method of Cluster Tools with Residency Time Constraint [J]. Journal of System Simulation, 2017, 29(2): 337-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||