Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (5): 1033-1043.doi: 10.16182/j.issn1004731x.joss.20-0977
• Modeling Theory and Methodology • Previous Articles Next Articles
Xin Wang(), Mingjun Xu, Jian Xiao, Lizhong Xu
Received:
2020-12-07
Revised:
2021-06-15
Online:
2022-05-18
Published:
2022-05-25
CLC Number:
Xin Wang, Mingjun Xu, Jian Xiao, Lizhong Xu. Water Body Extraction from High Resolution Remote Sensing Images Based on Fused Visual Word Bags[J]. Journal of System Simulation, 2022, 34(5): 1033-1043.
Table 1
Experimental results of algorithm
序号 | Acc/% | Los/% | Fal/% | Kappa |
---|---|---|---|---|
1 | 98.50 | 0.96 | 0.54 | 0.966 5 |
2 | 98.32 | 1.14 | 0.55 | 0.901 0 |
3 | 98.40 | 0.97 | 0.63 | 0.944 2 |
4 | 99.26 | 0.30 | 0.44 | 0.966 5 |
5 | 98.60 | 0.74 | 0.66 | 0.971 9 |
6 | 97.78 | 1.52 | 0.70 | 0.941 9 |
7 | 98.58 | 0.58 | 0.85 | 0.966 9 |
8 | 98.23 | 0.65 | 1.11 | 0.952 0 |
9 | 98.85 | 0.90 | 0.24 | 0.967 7 |
10 | 98.34 | 0.71 | 0.95 | 0.957 7 |
平均 | 98.49 | 0.85 | 0.67 | 0.953 6 |
Table 2
Results before and after boundary optimization
序号 | Before Acc/% | Before Kappa | After Acc/% | After Kappa |
---|---|---|---|---|
1 | 97.06 | 0.933 5 | 98.50 | 0.966 5 |
2 | 96.67 | 0.784 7 | 98.32 | 0.901 0 |
3 | 97.01 | 0.891 1 | 98.40 | 0.944 2 |
4 | 99.03 | 0.954 9 | 99.26 | 0.966 5 |
5 | 97.86 | 0.957 1 | 98.60 | 0.971 9 |
6 | 96.43 | 0.908 5 | 97.78 | 0.941 9 |
7 | 97.76 | 0.948 7 | 98.58 | 0.966 9 |
8 | 97.49 | 0.930 1 | 98.23 | 0.952 0 |
9 | 97.61 | 0.931 3 | 98.85 | 0.967 7 |
10 | 97.27 | 0.928 8 | 98.34 | 0.957 7 |
平均 | 97.42 | 0.916 9 | 98.49 | 0.953 6 |
[1] | 石祥滨, 钟健, 刘翠微, 等. 小样本高光谱遥感图像深度学习方法[J]. 系统仿真学报, 2018, 30(7): 2744-2752. |
Shi Xiangbin, Zhong Jian, Liu Cuiwei, et al. Deep Learning Method for Hyperspectral Remote Sensing Images with Small Samples[J]. Journal of System Simulation, 2018, 30(7): 2744-2752. | |
[2] | 杨树文, 薛重生, 刘涛, 等. 一种利用TM影像自动提取细小水体的方法[J]. 测绘学报, 2010, 39(6): 611-617. |
Yang Shuwen, Xue Chongsheng, Liu Tao, et al. A Method of Small Water Information Automatic Extraction from TM Remote Sensing Images[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 611-617. | |
[3] | McFeeters, S K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing (S0143-1161), 1996, 17(7): 1425-1432. |
[4] | 崔佳玲. 基于纹理的高分辨率遥感图像水陆分离算法[D]. 武汉: 华中科技大学, 2016. |
Cui Jialing. High-resolution Remote Sensing Images Water-land Separation Algorithm Based on Texture Feature[D]. Wuhan: Huazhong University of Science & Technology, 2016. | |
[5] | 王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1): 35-42. |
Wang Ning, Cheng Jiahua, Zhang Hanye, et al. Application of U-net Model to Water Extraction with High Resolution Remote Sensing Data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42. | |
[6] | 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4): 43-49. |
Chen Qian, Zheng Lijuan, Li Xiaojuan, et al. Water Body Extraction from High-Resolution Satellite Remote Sensing Images Based on Deep Learning[J]. Geography and Geo-Information Science, 2019, 35(4): 43-49. | |
[7] | Zhang Y, Jin R, Zhou Z, et al. Understanding Bag-of-Words Model: a Statistical Framework[J]. International Journal of Machine Learning and Cybernetics (S1868-8071), 2010, 1(1): 43-52. |
[8] | Zhao L J, Tang P, Huo L Z. A 2-D Wavelet Decomposition-Based Bag-of-Visual-Words Model for Land-Use Scene Classification[J]. International Journal of Remote Sensing (S0143-1161), 2014, 35(6): 2296-2310. |
[9] | 王鑫, 徐明君, 李可, 等. 一种有效的高分辨率遥感影像水体提取方法[J]. 计算机工程与应用, 2019, 55(20): 145-151. |
Wang Xin, Xu Mingjun, Li Ke, et al. Effective Water Body Extraction Method for High Resolution Remote Sensing Images[J]. Computer Engineering and Applications, 2019, 55(20): 145-151. | |
[10] | 王小鹏, 文昊天, 王伟, 等. 形态学边缘检测和区域生长相结合的遥感图像水体分割[J]. 测绘科学技术学报, 2019, 36(2): 149-154. |
Wang Xiaopeng, Wen Haotian, Wang Wei, et al. Water Segmentation of Remote Sensing Image Using Morphological Edge Detection and Region Growing[J]. Journal of Geomatics Science and Technology, 2019, 36(2): 149-154. | |
[11] | 邓欣, 龙灿, 米建勋, 等. 基于多域特征与随机子空间集成的脑电分类[J]. 系统仿真学报, 2020, 32(9): 1787-1798. |
Deng Xin, Long Can, Mi Jianxun, et al. EEG Classification Based on Multi-domain Features and Random Subspace Ensemble[J]. Journal of System Simulation, 2020, 32(9): 1787-1798. | |
[12] | 谢士琴, 赵天忠, 王威, 等. 高分二号卫星影像融合方法比较研究[J]. 系统仿真学报, 2017, 29(11): 2742-2746. |
Xie Shiqin, Zhao Tianzhong, Wang Wei, et al. Study on Fusion Algorithms of GF-2 Satellite Image[J]. Journal of System Simulation, 2017, 29(11): 2742-2746. | |
[13] | 张永, 杨浩. 基于优化视觉词袋模型的图像分类方法[J]. 计算机应用, 2017, 37(8): 2244-2247. |
Zhang Yong, Yang Hao. Image Classification Method Based on Optimized Bag-of-Visual Words Model[J]. Journal of Computer Applications, 2017, 37(8): 2244-2247. | |
[14] | Liang X, Hu W Y. A Coupled Co-Occurrence Matrix/Multi-Scale Segmentation Method to Extract Water from High Resolution Remote Sensing Image[C]//GEOINFORMATICS 2018: 26th International Conference on Geoinformatics. Kunming, China: International Conference on Geoinformatics, 2018: 1-4. |
[15] | Boell M G, Alves H R, Volpato M, et al. Exploiting Feature Extraction Techniques for Remote Sensing Image Classification[J]. IEEE Latin America Transactions (S1548-0992), 2018, 16(10): 2657-2664. |
[16] | Li X, Lyu X, Tong Y, et al. An Object-Based River Extraction Method via Optimized Transductive Support Vector Machine for Multi-Spectral Remote-Sensing Images[J]. IEEE Access (S2169-3536), 2019, 7: 46165-46175. |
[17] | Chen Y, Fan R, Yang X, et al. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning[J]. Water (S2073-4441), 2018, 10(5): 585. |
[18] | Li L, Yan Z, Shen Q, et al. Water Body Extraction from Very High Spatial Resolution Remote Sensing Data Based on Fully Convolutional Networks[J]. Remote Sensing (S2072-4292), 2019, 11(10): 1162. |
[19] | Zhang F, Li J, Zhang B, et al. A Simple Automated Dynamic Threshold Extraction Method for the Classification of Large Water Bodies From Landsat-8 OLI Water Index Images[J]. International Journal of Remote Sensing (S0143-1161), 2018, 39(11): 3429-3451. |
[20] | Feng W, Sui H, Huang W, et al. Water Body Extraction From Very High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based Conditional Random Field Model[J]. IEEE Geoscience and Remote Sensing Letters (S1545-598X), 2019, 16(4): 618-622. |
[1] | Lifeng Zhang, Yu Miao. A High Resolution Reconstruction Method of Temperature Distribution in Acoustic Tomography [J]. Journal of System Simulation, 2022, 34(9): 2065-2073. |
[2] | Liu Xuan, Li Xiangyang, He Fang, Zhao Jianwei, Zhang Fenggan. Hyperspectral RX Anomaly Detection Method Based on the Fusion of Spatial and Spectral Feature [J]. Journal of System Simulation, 2021, 33(12): 2891-2900. |
[3] | Shi Xiangbin, Zhong Jian, Liu Cuiwei, Liu Fang, Zhang Deyuan. Deep Learning Method for Hyperspectral Remote Sensing Images with Small Samples [J]. Journal of System Simulation, 2018, 30(7): 2744-2752. |
[4] | Jiang Bingchuan, Wan Gang, Li Feng, Zhang wei, Yang Zhenfa. Robotic Navigation Map Construction with Ultra-High Resolution Volumetric Grid [J]. Journal of System Simulation, 2017, 29(11): 2709-2717. |
[5] | Liu Bin, Chen Xiangning, Guo Lianpeng. Study on 3D Battlefield Construction Based on UAV Remote Sensing Images [J]. Journal of System Simulation, 2015, 27(6): 1268-1273. |
[6] | Wang Chenhao. Light Illumination Simulation Approach for Remote Sensing Image Based on Geometric Mapping [J]. Journal of System Simulation, 2015, 27(3): 579-583. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||