1 |
周志华. 基于分歧的半监督学习[J].自动化学报, 2013,39(11): 1871-1878.
|
|
Zhou Zhihua. Disagreement-Based Semi-Supervised Learning[J].Acta Automatica Sinica, 2013, 39(11): 1871-1878.
|
2 |
Zhou Zhihua, Li Ming. Semi Supervised Regression with Cotraining-Style Algorithms[J]. IEEE Transactions on Knowledge and Data Engineering(S1041-4347) 2007, 19(11): 1479-1493.
|
3 |
程玉虎, 冀杰, 王雪松. 基于Help-Training的半监督支持向量回归[J].控制与决策, 2012, 27(2): 205-210, 226.
|
|
Cheng Yuhu, Ji Jie, Wang Xuesong. Semi-Supervised Support Vector Regression Based on Help-Training[J]. Control and Decision, 2012, 27(2): 205-210, 226.
|
4 |
盛高斌, 姚明海. 基于半监督回归的选择性集成算法[J].计算机仿真, 2009, 26(10): 198-201, 318.
|
|
Sheng Gaobin, Yao Minghai. An Ensemble Selection Algorithm Based on Semi-Supervised Regression[J]. Computer Simulation, 2009, 26(10): 198-201, 318.
|
5 |
Raju G, Cooney C. Active Learning from Process Data[J]. AIChE Journal (S0001-1541), 1998, 44: 2199-2211
|
6 |
Li Jiayi, Xin Huang, Chang Xiaoyu. A label-Noise Robust Active Learning Sample Collection Method for Multi-Temporal Urban Land-Cover Classification and Change Analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing (S0924-2716), 2020, 163: 1-17.
|
7 |
Chiu S C, Jin Z, Gu Y. Active Learning Combining Uncertainty and Diversity for Multi-Class Image Classification[J]. IET Computer Vision (S1751-9632), 2015, 9(3): 400-407.
|
8 |
Ge zhiqiang. Active Learning Strategy for Smart Soft Sensor Development under a Small Number of Labeled Data Samples[J]. Journal of Process Control (S0959-1524), 2014, 24(9): 1454-1461.
|
9 |
Shi Xudong, Xiong Weili. Approximate linear Dependence Criteria with Active Learningfor Smart Soft Sensor Design[J]. Chemometrics and Intelligent Laboratory Systems (S0169-7639), 2018, 180: 88-95.
|
10 |
FREUND Y, SEUNG H S, SHAMIR E, et al. Selective Sampling Using the Query by Committee Algorithm[J]. Machine Learning (S0885-6125), 1997, 28(2/3): 133-168.
|
11 |
Cohn D, Atlas L, Ladner R. Improving Generalization with Active Learning[J]. Machine Learning (S0885-6125), 1994, 15(2): 201-221.
|
12 |
MUSLEA I, MINTON S, KNOBLOCK C A. Active Learning with Multiple Views[J].Journal of Artificial Intelligence Research (S1615-147X), 2006, 27: 203-233.
|
13 |
Yong Z, Meng J E. Sequential Active Learming Using Meta-Cognitive Extreme Learning Machine[J]. Neurocomputing (S0925-2312), 2016, 173(3): 835-844.
|
14 |
Ge Zhiqiang. Active Probabilistic Sample Selection for Intelligent Soft Sensing of Industrial Processes[J]. Chemometrics & Intelligent Laboratory Systems (S0169-7439), 2016, 151: 181-189.
|
15 |
Tong Jun, Rui Hu, Xi Jiangtao, et al. Linear Shrinkage Estimation of Covariance Matrices Using Low-Complexity Cross-Validation[J]. Signal Processing (S0165-1684), 2018, 148: 223-233.
|
16 |
Qian Junhui, He Zishu, Xie Julan, et al. Null Broadening Adaptive Beamforming Based on Covariance Matrix Reconstruction and Similarity Constraint[J] Signal Processing (S1687-6172), 2017, 2017(1): 1-10.
|
17 |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J].控制与决策, 2013, 28(8): 1121-1129.
|
|
He Zhikun, Liu Guangbin, Zhao Xijing, et al. Overview of Gaussian Process Regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137.
|
18 |
Fernando D S, Adriana N A. Biomass Estimation in Batch Biotechnological Processes by Bayesian Gausian Process Regression[J]. Computers & Chemical Engineering(S0098-1354), 2008, 32(12): 3264-3273.
|
19 |
Alexandra G, Jus K, Tor A. Explicit Stochastic Predictive Control Of Combustion Plants Based on Gaussian Process [J].Automatica(S 0005-1098), 2008,44(6): 1621-1631.
|
20 |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J].化工学报, 2013, 64(3): 788-800.
|
|
Cao Junfei, Luo Xionglin. Modeling of Soft Sensor for Chemical Process[J]. CIESC Journal,2013, 64(3): 788-800.
|
21 |
Fortuna L, Graziani S, Xibilia M G. Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns[J]. Control Engineering Practice (S0967-0661), 2005, 13(4): 499-508.
|