Journal of System Simulation ›› 2026, Vol. 38 ›› Issue (1): 29-44.doi: 10.16182/j.issn1004731x.joss.25-0626
• Papers • Previous Articles Next Articles
Liu Dayong1,2, Dong Zhiming1, Gao Jiancheng1
Received:2025-07-01
Revised:2025-08-19
Online:2026-01-18
Published:2026-01-28
Contact:
Dong Zhiming
CLC Number:
Liu Dayong, Dong Zhiming, Gao Jiancheng. Military Metaverse: Conceptual Connotation, Construction and Application Framework, Key Issues[J]. Journal of System Simulation, 2026, 38(1): 29-44.
Table 1
Classification of metaverse definitions
| 观点 | 核心要义 | 别称 | 典型代表 | 本质特征 |
|---|---|---|---|---|
| 虚拟平行世界派 | 元宇宙是与现实世界平行、独立存在的虚拟空间,用户可在其中实时交互 | 新大陆 | ①尼尔·斯蒂芬森(《雪崩》作者):一个脱胎于现实世界,又与现实世界平行、相互影响的在线虚拟世界[ | 强调虚拟空间的独立性与持久性,弱化与现实世界的即时交互 |
| 虚实融合系统派 | 虚拟与现实深度交互、经济社交系统高度融合的新型社会形态 | 新宇宙 | ①胡晓峰:虚实融合的新型时空;②清华大学新媒体研究中心:整合新技术形成的虚拟现实融合社会形态,实现经济、社交、身份系统的融合[ | 突出虚实共生与社会属性,强调技术对生产关系的重构 |
| 技术集成载体派 | 集成多项前沿技术(XR/区块链/AI等)的新形态互联网 | 互联网3.0 | 扎克伯格(Meta):新一代移动互联网——“具身互联网”[ | 以技术堆栈定义元宇宙,强调其对互联网的升级替代 |
| 人类感官延伸派 | 元宇宙是突破物理限制的人类感官与生存维度拓展 | 意识容器 | ①钱学森:在线交互的虚拟空间(灵境),突破人类感官局限;②Improbable总裁赫尔曼·纳鲁拉:提供代理感和存在感的沉浸式虚拟世界[ | 聚焦沉浸体验与认知升维,重视脑机接口等感官延伸技术 |
| 文明演进形态派 | 元宇宙是人类文明向数字空间迁移的必然阶段,将重构社会规则 | 数字文明 | ①中关村数字媒体产业联盟:经由感知设备实现虚实交互的数字社区,具备永续时空、开放生态等特征[ | 从文明进化史观解读元宇宙,指向人类社会结构的根本性变革 |
Table 3
Military metaverse main application directions
| 应用方向 | 具体应用描述 | |
|---|---|---|
| 军事训练 | 多域协同训练 | 支撑陆、海、空跨域协同训练 |
| 战术分队模拟训练 | 如美军“合成训练环境”模拟城市与山区攻防[ | |
| 单兵技能沉浸式训练 | 采用AR/VR设备模拟武器操作 | |
| 辅助决策 | 方案验证 | 在数字孪生环境中验证方案预案 |
| 作战概念设计与验证 | 在虚拟环境中测试新型理论,通过实时数据反馈优化战术可行性 | |
| 战术战法创新 | 利用元宇宙沙盒环境模拟非对称场景,探索创新性战术方案 | |
| 装备研发与试验 | 装备论证与设计(先期演示验证) | 在虚拟环境中构建原型装备模型,加速设计迭代与成本控制 |
| 武器系统虚拟试验、体系试验 | 通过数字孪生技术验证武器兼容性及杀伤链效能,如德国用“GhostPlay”平台改进升级旧装备的性能[ | |
| 指挥控制 | 跨域数据融合与可视化呈现 | 整合多源情报数据生成全域态势图,辅助指挥决策 |
| 分布式指挥决策协同 | 通过区块链与云架构实现跨地域指挥节点实时交互 | |
| 后装保障 | 数字孪生后勤系统 | 构建虚拟化供应链模型,预测物资消耗并优化配送路径,降低战时后勤风险 |
| 区块链赋能的物资追踪 | 利用分布式账本技术实现装备全生命周期透明化管理 | |
Table 4
Development stages of the military metaverse
Table 5
Classification and technical analysis of virtual-physical interaction devices
| 类别 | 设备名称 | 功能 | 当前成熟产品 | 技术问题 | 下一步发展趋势 |
|---|---|---|---|---|---|
| 人与虚拟空间交互设备 | 增强现实(AR)头盔 | 叠加虚拟信息至真实战场,增强态势感知与决策能力 | 美军IVAS系统[ | 视场角受限、续航不足、复杂环境适应性差 | 轻量化设计、全天候抗干扰能力、自适应光学渲染技术 |
| 虚拟现实(VR)训练系统 | 构建沉浸式虚拟战场,支持战术演练与技能强化 | Varjo XR-4系列产品[ | 晕动症引发不适、多模态反馈精度不足 | 多感官协同反馈、动态生理适应性调节、脑机融合交互 | |
| 脑机接口(BCI)设备 | 通过神经信号操控虚拟替身或无人装备,提升交互效率 | DARPA N3项目[ | 信号噪声干扰大、侵入式接口不适合推广 | 非侵入式高精度传感、神经信号实时解码算法 | |
| 多模态交互套件 | 集成语音、手势、眼球跟踪、触觉等多通道输入输出功能 | 微软HoloLens 2可提供空间映射、混合现实捕捉、6DoF追踪等功能[ | 多模态数据融合算法不成熟、跨设备兼容性差 | 深度学习驱动的多模态感知融合、标准化交互协议制定 | |
| 嗅觉/触觉反馈装置 | 模拟战场气味(火药、烟雾)及物理触感(爆炸冲击、武器后坐力) | OVR Technology公司的嗅觉发生器ION 3[ | 气味生成种类有限、触觉反馈分辨率低 | 多物理场耦合建模、微型化可穿戴设计 | |
| 智能无人系统交互设备 | 无人装备控制终端 | 实现无人机、无人车等实体与虚拟替身的双向指令同步 | 洛克希德·马丁公司的SIMRES系统[ | 通信延迟导致控制滞后、异构协议兼容性差 | 边缘计算优化、跨域协议标准化、自主决策权限动态分配 |
| 数字孪生同步模块 | 实时映射无人装备状态至虚拟空间 | 德国“GhostPlay”平台[ | 数据更新频率低、多源传感器融合误差 | 高精度实时同步算法、多模态数据融合框架、抗干扰加密传输 | |
| 边缘计算节点 | 在本地处理无人装备与虚拟空间的交互数据,降低云端依赖 | 美军“战术云”边缘节点、北约分布式训练平台 | 算力资源有限、安全防护机制薄弱 | 量子-边缘计算融合、零信任架构加固、自适应资源调度算法 |
| [1] | 耿一丹, 潘榕, 董桂官, 等. 扩展现实(XR)标准体系研究[J]. 信息技术与标准化, 2024(9): 29-34. |
| Geng Yidan, Pan Rong, Dong Guiguan, et al. Research on the Integrated Standard System of Extended Reality(XR)[J]. Information Technology & Standardization, 2024(9): 29-34. | |
| [2] | 曾诗钦, 霍如, 黄韬, 等. 区块链技术研究综述:原理、进展与应用[J]. 通信学报, 2020, 41(1): 134-151. |
| Zeng Shiqin, Huo Ru, Huang Tao, et al. Survey of Blockchain: Principle, Progress and Application[J]. Journal on Communications, 2020, 41(1): 134-151. | |
| [3] | 冯琦琦, 董志明, 彭文成, 等. 几种典型的虚实融合技术发展研究[J]. 系统仿真学报, 2023, 35(12): 2497-2511. |
| Feng Qiqi, Dong Zhiming, Peng Wencheng, et al. Development of Several Typical Virtual Reality Fusion Technologies[J]. Journal of System Simulation, 2023, 35(12): 2497-2511. | |
| [4] | 邱晓刚, 张鹏. 面向平行军事系统的领域仿真知识工程研究[J]. 系统仿真学报, 2015, 27(8): 1665-1669, 1679. |
| Qiu Xiaogang, Zhang Peng. Knowledge Engineering in Simulation of Parallel Military System[J]. Journal of System Simulation, 2015, 27(8): 1665-1669, 1679. | |
| [5] | 冯琦琦, 董志明, 李亮, 等. 平行战场技术与应用[J]. 装甲兵学报, 2023, 2(3): 97-100. |
| Feng Qiqi, Dong Zhiming, Li Liang, et al. Parallel Battlefield Technology and Its Applications[J]. Journal of Armored Forces, 2023, 2(3): 97-100. | |
| [6] | 胡晓峰, 郭圣明, 贺筱媛. 指挥信息系统的智能化挑战——“深绿”计划及AlphaGo带来的启示与思考[J]. 指挥信息系统与技术, 2016, 7(3): 1-7. |
| Hu Xiaofeng, Guo Shengming, He Xiaoyuan. Challenges to Intelligent Command Information System: Reason and Revelation on Deep Green Plan and AlphaGo[J]. Command Information System and Technology, 2016, 7(3): 1-7. | |
| [7] | 武剑, 孙玉停, 刘良. 作战值勤智能虚拟参谋系统需求与设计[J]. 国防科技, 2022, 43(6): 89-93, 113. |
| Wu Jian, Sun Yuting, Liu Liang. Requirements and Design of an Intelligent Virtual Staff System for Combat Duty[J]. National Defense Technology, 2022, 43(6): 89-93, 113. | |
| [8] | 吴素彬, 王理阁. 美军指南针计划改善情报人员结构性劣势方法研究[J]. 飞航导弹, 2019(5): 39-42. |
| Wu Subin, Wang Lige. Research on Methods to Improve Structural Disadvantages of Intelligence Personnel Through the US Military's Compass Program[J]. Aerodynamic Missile Journal, 2019(5): 39-42. | |
| [9] | 张洪广, 杨林, 杨雄军, 等. 大模型驱动的智能辅助决策原理与典型应用[J]. 指挥与控制学报, 2024, 10(6): 661-668. |
| Zhang Hongguang, Yang Lin, Yang Xiongjun, et al. Principle and Typical Implementation of Intelligent Aided Decision-making System Driven by Large Models[J]. Journal of Command and Control, 2024, 10(6): 661-668. | |
| [10] | 张龙, 雷震, 冯轩铭, 等. 军事大模型: 应用分析、关键技术和评估体系框架[C]//第六届体系工程学术会议论文集—体系工程与高质量发展会议论文集. 长沙: 国防科技大学系统工程学院, 2024: 1149-1162. |
| Zhang Long, Lei Zhen, Feng Xuanming, et al. Military MLLMs (Multimodal Large Language Models): Applied Analysis, Key Technologies, and Evaluation System Framework[C]//Proceedings of the 6th Systems Engineering Academic Conference. Changsha: School of Systems Engineering, National University of Defense Technology, 2024: 1149-1162. | |
| [11] | Goecks V G, Waytowich N. COA-GPT: Generative Pre-trained Transformers for Accelerated Course of Action Development in Military Operations[EB/OL]. (2024-03-28) [2025-06-30]. . |
| [12] | 李莎. 德军打造新一代“虚拟战场”提升武器性能[EB/OL]. (2023-09-12) [2025-04-25]. . |
| Li Sha. German Military Builds a New Generation of “Virtual Battlefield” to Enhance Weapon Performance[EB/OL]. (2023-09-12) [2025-04-25]. . | |
| [13] | 胡乐乐. 军事元宇宙: 用途与案例[N]. 光明日报, 2022-07-10(07). |
| Hu Lele. Military Metaverse: Applications and Cases[N]. Guangming Daily, 2022-07-10(07). | |
| [14] | 李小琳. 元宇宙、数字孪生技术在军事中的应用[EB/OL]. (2023-10-23)[2025-04-25]. . |
| Li Xiaolin. Applications of Metaverse and Digital Twin Technology in the Military[EB/OL]. (2023-10-23)[2025-04-25]. . | |
| [15] | Wikipedia.org. Metaverse[EB/OL]. [2025-04-29]. . |
| [16] | 管筱璞, 李云舒. 元宇宙如何改写人类社会生活[EB/OL]. (2021-12-23) [2025-04-29]. . |
| Guan Xiaopu, Li Yunshu. How Metaverse Reshapes Human Social Life[EB/OL]. (2021-12-23) [2025-04-29]. . | |
| [17] | 李岩. "元宇宙"等如何定名释义?全国科技名词委研讨会形成共识[EB/OL]. (2022-09-14) [2025-04-29]. . |
| Li Yan. How to Name and Interpret "Metaverse" and Similar Terms? National Science and Technology Terminology Commission Seminar Reaches a Consensus[EB/OL]. (2022-09-14) [2025-04-29]. . | |
| [18] | 新媒沈阳团队. 2020-2021年元宇宙发展研究报告(0.98版) [EB/OL]. (2021-09-16) [2025-05-26]. . |
| Xinmei Shenyang Team. Research Report on the Development of the Metaverse (V0.98)[EB/OL]. (2021-09-16) [2025-05-26]. . | |
| [19] | 中国电子工业标准化技术协会. 元宇宙参考架构: T/CESA 1363—2024 [S]. 2024. |
| China Electronics Standardization Association. Metaverse Reference Architecture: T/CESA 1363—2024 [S].2024. | |
| [20] | 龚才春, 杜振雷. “元宇宙”的术语定义及相关问题研究[EB/OL]. (2023-02-27) [2025-04-29]. . |
| Gong Caichun, Du Zhenlei. The Terminology Definition and Related Research of the Metaverse[EB/OL]. (2023-02-27) [2025-04-29]. . | |
| [21] | 赵坦, 吴琳, 陶九阳, 等. 元宇宙概念及其军事运用[J]. 系统仿真学报, 2023, 35(7): 1405-1420. |
| Zhao Tan, Wu Lin, Tao Jiuyang, et al. Metaverse Concept and Its Military Application[J]. Journal of System Simulation, 2023, 35(7): 1405-1420. | |
| [22] | 董浩宇. “元宇宙”特性、概念与商业影响研究--兼论元宇宙中的营销传播应用[J]. 现代广告, 2022(8): 4-12. |
| Dong Haoyu. A Study on the Characteristics, Concept and Commercial Influence of “Meteverse”--and the Discussion on the Application of Marketing Communication in the“Meteverse”[J]. Modern Advertising, 2022(8): 4-12. | |
| [23] | 沈阳. 元宇宙的三化、三性和三能[J]. 传媒, 2022(14): 21-22. |
| Shen Yang. Three Dimensions, Three Attributes, and Three Capabilities of Metaverse[J]. Media, 2022(14): 21-22. | |
| [24] | 杨佩, 王皓, 罗文杰, 等. HUNTBot-第一人称射击游戏中NPC的结构设计[J]. 计算机科学, 2008, 35(11): 290-292. |
| Yang Pei, Wang Hao, Luo Wenjie, et al. HUNTBot-Architecture of NPC in the FPS Game[J]. Computer Science, 2008, 35(11): 290-292. | |
| [25] | 胡晓峰. 谈谈军事元宇宙(上)[EB/OL]. (2022-08-15) [2025-04-27]. . |
| Hu Xiaofeng. Discussion on Military Metaverse (Part I) [EB/OL]. (2022-08-15) [2025-04-27]. . | |
| [26] | 黄金荣, 刘百祥, 张亮, 等. 基于智能合约和非同质化代币的去中心化匿名身份认证模型[J]. 计算机工程, 2023, 49(4): 14-22. |
| Huang Jinrong, Liu Baixiang, Zhang Liang, et al. Decentralized Anonymous Identity Authentication Model Based on Smart Contracts and Non-fungible Tokens[J]. Computer Engineering, 2023, 49(4): 14-22. | |
| [27] | 隋蕙名. “互联网+”产品设计开发的众创模式分析[J]. 互联网周刊, 2023(13): 45-47. |
| Sui Huiming. Analysis of Crowdsourcing Model in Product Design and Development of “Internet Plus”[J]. China Internet Week, 2023(13): 45-47. | |
| [28] | 新媒沈阳团队. 元宇宙发展研究报告(3.0版)[EB/OL]. (2022-11-14) [2025-05-26]. . |
| Xinmei Shenyang Team. Metaverse Development Research Report (V3.0)[EB/OL]. (2022-11-14) [2025-05-26]. . | |
| [29] | 高飞, 林崧. 量子密码和量子计算专题·编者按[J]. 中国科学(物理学 力学 天文学), 2025, 55(4): 240301. |
| Gao Fei, Lin Song. Special Topic: Quantum Cryptography and Quantum Computing[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2025, 55(4): 240301. | |
| [30] | 刘亚东, 李明, 周宗潭. 脑机接口技术的军事应用前景及其挑战[J]. 控制理论与应用, 2024, 41(11): 1991-2001. |
| Liu Yadong, Li Ming, Zhou Zongtan. Military Application Prospects and Challenges of Brain Computer Interface Technology[J]. Control Theory & Applications, 2024, 41(11): 1991-2001. | |
| [31] | Zhu Ling. The Metaverse: Concepts and Issues for Congress[EB/OL]. (2022-08-26)[2025-05-26]. . |
| [32] | 刘伟, 谭文辉, 刘欣. 人机环境系统智能: 超越人机融合[M]. 北京: 科学出版社, 2024. |
| Liu Wei, Tan Wenhui, Liu Xin. Intelligence in Human-Machine-Environment Systems: Beyond Human-Machine Integration[M]. Beijing: Science Press, 2024. | |
| [33] | 廖勇, 韩小金, 刘金林, 等. 可解释性人工智能研究进展[J/OL]. 计算机工程. (2024-10-30) [2025-05-06]. . |
| Liao Yong, Han Xiaojin, Liu Jinlin, et al. Research Progress of Interpretable Artificial Intelligence[J/OL]. Computer Engineering. (2024-10-30) [2025-05-06]. . | |
| [34] | 杨泽宇, 邓诚骏, 赵晶, 等. 盘点: 美国陆军即将列装的五大步兵“杀器”[EB/OL]. (2021-01-12) [2025-04-25]. . |
| Yang Zeyu, Deng Chengjun, Zhao Jing, et al. Review: Five Infantry “Killers”to be Deployed by the U.S. Army[EB/OL]. (2021-01-12) [2025-04-25]. . | |
| [35] | 李优. 英国皇家空军在教练机上完成增强现实飞行试验[EB/OL]. (2025-01-03) [2025-04-25]. . |
| Li You. Royal Air Force Completes Augmented Reality Flight Test on Trainer Aircraft[EB/OL]. (2025-01-03) [2025-04-25]. . | |
| [36] | 爱迪斯通科技. Varjo发布新款头盔XR-4,更高视觉保真度, 带来更真实的VR体验[EB/OL]. (2023-11-29) [2025-05-07]. . |
| Axis 3D Technology. Varjo Launches XR-4 Headset with Enhanced Visual Fidelity for Immersive VR Experience[EB/OL]. (2023-11-29) [2025-05-07]. . | |
| [37] | Defense Advanced Research Projects Agency. Next-Generation Nonsurgical Neurotechnology (N 3)[EB/OL]. [2025-02-20]. . |
| [38] | 百度百科. 微软Hololens 2 [EB/OL]. [2025-04-25]. . |
| Encyclopedia Baidu. Microsoft HoloLens 2[EB/OL]. [2025-04-25]. . | |
| [39] | Lhw. CES 2023: 消费级可穿戴气味设备“ION 3”发布[EB/OL]. (2023-01-06) [2025-05-07]. . |
| Lhw. CES 2023: Consumer Wearable Scent Device “ION 3” Launched[EB/OL]. (2023-01-06) [2025-05-07]. . | |
| [40] | VR圈中圈. 使用全身触觉反馈系统增强飞行员在训练中的感知能力[EB/OL]. (2023-07-18) [2025-05-07]. . |
| Circle Within Circle VR. Enhancing Pilots' Perceptual Abilities During Training Using a Whole-body Tactile Feedback System[EB/OL]. (2023-07-18) [2025-05-07]. . | |
| [41] | 泰格逃课. 洛马推出地理配对SIMRES战术交战模拟系统[EB/OL]. (2023-12-13) [2025-04-25]. . |
| Tiger Skipped Class. Lockheed Martin. SIMRES Tactical Engagement Simulation System with Geolocation Pairing[EB/OL]. (2023-12-13) [2025-04-25]. . | |
| [42] | 李伟强, 邓红艳, 王修齐. 军事元宇宙引领军事生态系统建设发展[J]. 军事文摘, 2023(5): 61-65. |
| Li Weiqiang, Deng Hongyan, Wang Xiuqi. Military Metaverse Leading the Development of Military Ecosystem Construction[J]. Military Digest, 2023(5): 61-65. | |
| [43] | 张宗洋, 周子博, 邓燚. 零知识证明递归与复合技术研究综述[J]. 计算机学报, 2024, 47(10): 2466-2490. |
| Zhang Zongyang, Zhou Zibo, Deng Yi. A Survey on Recursive and Composite Techniques of Zero-Knowledge Proofs[J]. Chinese Journal of Computers, 2024, 47(10): 2466-2490. |
| [1] | Chen Qinghua, Liang Zuoyou, Guan Weijuan, Ji Jiadong, Liu Ping. Construction Method of Digital Twin System for High-low Temperature Test Chamber [J]. Journal of System Simulation, 2025, 37(6): 1400-1411. |
| [2] | Zhao Zhang, Yujie Guo, Xiaoning Zhao, Baoliang Sun, Shuanghou Deng, Guoxu Feng. Military Metaverse: Key Technologies, Potential Applications and Future Directions [J]. Journal of System Simulation, 2023, 35(7): 1421-1437. |
| [3] | Tan Zhao, Lin Wu, JiuYang Tao, Shuai Li. Metaverse Concept and Its Military Application [J]. Journal of System Simulation, 2023, 35(7): 1405-1420. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||