Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (5): 1103-1115.doi: 10.16182/j.issn1004731x.joss.24-0701
• Simulation Technology for New Energy and Transportation Systems under the Dual Carbon Goals • Next Articles
He Guixiong1, Jia Xiaoqiang1, Dong Shufeng2, Han Yonglu3, Chen Yonghua4, Zheng Yiming2
Received:
2024-07-02
Revised:
2024-09-02
Online:
2025-05-20
Published:
2025-05-23
CLC Number:
He Guixiong, Jia Xiaoqiang, Dong Shufeng, Han Yonglu, Chen Yonghua, Zheng Yiming. Design and Realization of Integrated Energy System Dynamic Stability Simulation and Steady-state Simulation System[J]. Journal of System Simulation, 2025, 37(5): 1103-1115.
Table 2
ModBus TCP client channel file parameters
数据名称 | 数据格式 | 说明 |
---|---|---|
通道名称 | 字符串 | |
连接个数 | u64 | 指TCP服务端建立的通道数量 |
服务端口 | u64 | 需设置为未占用端口 |
连接名称 | 字符串 | |
测点个数 | u64 | 用正整数表示这个通道中测点的个数 |
客户端IP | 字符串 | 格式为IPv4地址格式 |
客户端端口 | u64 | |
slave id | u64 | |
通信协议 | XA/ENCAP | ENCAP指Modbus RTU Over TCP/IP通信协议。XA指Modbus TCP/IP通信协议 |
一次读寄存器数上限 | u64 | |
一次读开关数上限 | u64 | |
一次写寄存器上限 | u64 | |
一次写开关数上限 | u64 | |
轮询周期和超时时间 | u64 | 单位为ms |
Table 3
Equipment parameters of the comprehensive energy system in the park
编号 | 名称 | 规格及技术参数 | 数量 |
---|---|---|---|
1 | 燃气内 燃机 | 发动机型号:TCG2032V16;机组发电效率:43.6%;机组热效率:20.6%;天然气气耗: 974 Nm3/h(0.195 kg/s);排烟温度:465 ℃;排气流量:22 784 kg/h;功率:4 282 kW,10.5 kV,50 HZ | 2 |
2 | 烟气热水型溴化锂机组 | 型号:RGD135YG;制冷量:4 105 kW;制热量:3 917 kW;电功率:18.65 kW(380 V):冷/温水进出口温度12.5~5.5/60~90 ℃;冷却水进出口温度:32/39 ℃;冷/温水流量:504.2/112.3 m3/h;冷却水流量:1 025 m3/h;工作压力:l.0 kPa;污垢系数:0.086 m2K/kW;排烟温度:120 ℃;运行重量74 000 kg | 2 |
3 | 电制冷 机组 | 型号:YKRRRRK45DHG;制冷量:6 997 kW;电功率:1 345 kW(10 kV);COP:5.20;制冷剂:R-134a;冷冻水/冷却水进出口温度:12~5/32~39 ℃;冷却水流量:1 022.4 m3/h;冷冻水流量:858 m3/h | 6 |
4 | 燃气热水锅炉 | 型号:WNS7.0-1.0/115/70-YQ;热功率:7 MW;进出口温度:92 ℃/58 ℃;工作压力:l.0 kPa;燃气耗量:730 Nm3/h,电功率:22 kW | 3 |
5 | 蓄冷水箱I | 混凝土,V=4 100 m3;进出口温度5.5/12.5 ℃ | 1 |
6 | 蓄冷水箱II | 混凝土,V=2 170 m3;进出口温度5.5/12.5 ℃ | 1 |
7 | 蓄冷、 热水箱 | 不锈钢,V=500 m3;蓄热温度:60/90 ℃;蓄冷温度:5.5/12.5 ℃ | 2 |
Table 4
Park integrated energy system equipment simulation parameters
编号 | 名称 | 规格及技术参数 | 数量 |
---|---|---|---|
1 | 燃气内燃机 | 额定功率:4 300 kW;冲程数:4;有效进气面积:0.1 m2;压缩比:7;燃烧系数:1.5;额定转速:2 000 rpm | 2 |
2 | 烟气热水型溴化锂机组 | 冷冻水额定流量:140 kg/s;制冷剂额定流量:4 500 g/s;冷却水供水温度:32 ℃;冷却水供水流量:1 000 m3/h;工作压力:1 000 Pa | 2 |
3 | 燃气热水锅炉 | 额定热功率:7 000 kW;额定热水流量:49 kg/s;空气-燃气掺混比:30;燃烧系数:1.69 | 3 |
4 | 蓄冷水箱I | V:4 100 m3;最低水位:0.5 m3;初始水量:0.01 m3;水箱初始温度:15 ℃ | 1 |
5 | 蓄冷水箱II | V:2 170 m3;最低水位:0.5 m3;初始水量:0.01 m3;水箱初始温度:15 ℃ | 1 |
6 | 蓄热水箱 | V:500 m3;最低水位:0.5 m3;初始水量:0.01 m3;水箱初始温度:50 ℃ | 2 |
1 | 朱晗. 基于DER-CAM的开发与改进对分布式能源系统的运行策略优化研究[D]. 天津: 天津大学, 2015. |
Zhu Han. Study on Operational Strategy Optimization of Distributed Energy System Based on the Development of DER-CAM[D]. Tianjin: Tianjin University, 2015. | |
2 | 孙宏斌, 郭庆来, 潘昭光, 等. 能源互联网:驱动力、评述与展望[J]. 电网技术, 2015, 39(11): 3005-3013. |
Sun Hongbin, Guo Qinglai, Pan Zhaoguang, et al. Energy Internet: Driving Force, Review and Outlook[J]. Power System Technology, 2015, 39(11): 3005-3013. | |
3 | 彭克, 张聪, 徐丙垠, 等. 多能协同综合能源系统示范工程现状与展望[J]. 电力自动化设备, 2017, 37(6): 3-10. |
Peng Ke, Zhang Cong, Xu Bingyin, et al. Status and Prospect of Pilot Projects of Integrated Energy System with Multi-energy Collaboration[J]. Electric Power Automation Equipment, 2017, 37(6): 3-10. | |
4 | 侯孚睿, 王秀丽, 锁涛, 等. 英国电力容量市场设计及对中国电力市场改革的启示[J]. 电力系统自动化, 2015, 39(24): 1-7. |
Hou Furui, Wang Xiuli, Suo Tao, et al. Capacity Market Design in the United Kingdom and Revelation to China's Electricity Market Reform[J]. Automation of Electric Power Systems, 2015, 39(24): 1-7. | |
5 | 时珊珊, 苏义荣, 改传跃. 智能社区低碳能源管理系统方案研究[J]. 华东电力, 2014, 42(12): 2918-2921. |
Shi Shanshan, Su Yirong, Gai Chuanyue. Scheme for Low-carbon Energy Management System in Intelligent Community[J]. East China Electric Power, 2014, 42(12): 2918-2921. | |
6 | 贾宏杰, 穆云飞, 余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设, 2015, 36(1): 16-25. |
Jia Hongjie, Mu Yunfei, Yu Xiaodan. Thought About the Integrated Energy System in China[J]. Electric Power Construction, 2015, 36(1): 16-25. | |
7 | 吴建中. 欧洲综合能源系统发展的驱动与现状[J]. 电力系统自动化, 2016, 40(5): 1-7. |
Wu Jianzhong. Drivers and State-of-the-art of Integrated Energy Systems in Europe[J]. Automation of Electric Power Systems, 2016, 40(5): 1-7. | |
8 | 王玉东, 胡俊杰. 考虑多主体交互策略的综合能源系统P2P能-碳管理方法[J]. 系统仿真学报, 2024, 36(10): 2488-2502. |
Wang Yudong, Hu Junjie. Peer-to-peer Energy-carbon Management Method of Multiple Integrated Energy Systems Considering Multi-agent Interaction Strategy[J]. Journal of System Simulation, 2024, 36(10): 2488-2502. | |
9 | 马立新, 程颍. 计及可中断负荷的园区综合能源系统优化调度[J]. 系统仿真学报, 2022, 34(4): 817-825. |
Ma Lixin, Cheng Ying. Optimal Operation for Park Integrated Energy System Considering Interruptible Loads[J]. Journal of System Simulation, 2022, 34(4): 817-825. | |
10 | 何力. 基于需求侧响应的并网微电网能量优化调度研究[D]. 上海: 上海电机学院, 2019. |
He Li. Research on Energy Optimization Dispatching of Grid-connected Microgrid Based on Demand Side Response[D]. Shanghai: Shanghai Dianji University, 2019. | |
11 | 孙嘉悦. 基于模拟退火算法的供给侧新型电网规划问题研究[J]. 机电工程技术, 2019, 48(12): 39-41, 162. |
Sun Jiayue. New Supply-side Power Grid Planning Research Based on Simulated Annealing Algorithm[J]. Mechanical & Electrical Engineering Technology, 2019, 48(12): 39-41, 162. | |
12 | 张海防. 基于禁忌粒子群算法的微电网经济运行应用研究[D]. 锦州: 辽宁工业大学, 2015. |
Zhang Haifang. Research on Economic Operation Application of Microgrid Based on TSPSO[D]. Jinzhou: Liaoning University of Technology, 2015. | |
13 | 李瑞. 基于禁忌搜索算法的电煤多式联运成本优化研究[D]. 北京: 华北电力大学, 2014. |
Li Rui. Research on Cost Optimization of Power-coal Multi-transportation Based on Tabu Search Algorithm[D]. beijing: North China Electric Power University, 2014. | |
14 | 侯瑞. 基于粒子群算法的区域综合能源系统规划及运行优化[J]. 内蒙古电力技术, 2019, 37(4): 43-48. |
Hou Rui. Planning of Reginal Integrated Energy System Based on Particle Swarm Optimization and Its Operation Optimization[J]. Inner Mongolia Electric Power, 2019, 37(4): 43-48. | |
15 | 邹玙琦, 李志明, 杨国华, 等. 基于粒子群算法的城镇综合能源系统优化调度研究[J]. 电气传动自动化, 2019, 41(4): 4-9. |
Zou Yuqi, Li Zhiming, Yang Guohua, et al. Research on Optimal Scheduling of Urban Integrated Energy System Based on Particle Swarm Algorithm[J]. Electrical Drive Automation, 2019, 41(4): 4-9. | |
16 | 陈相吾. 基于改进蝙蝠算法的多能互补微电网优化调度研究[D]. 西安: 西安理工大学, 2019. |
Chen Xiangwu. Research on Multi-energy Complementary Microgrid Optimal Dispatching Based on Improved Bat Algorithms[D]. Xi'an: Xi'an University of Technology, 2019. | |
17 | 范彬, 周力行, 黄頔, 等. 基于改进蝙蝠算法的配电网分布式电源规划[J]. 电力建设, 2015, 36(3): 123-128. |
Fan Bin, Zhou Lixing, Huang Di, et al. Distributed Generation Planning for Distribution Network Based on Modified Bat Algorithm[J]. Electric Power Construction, 2015, 36(3): 123-128. | |
18 | 赵建东, 商执一, 王自上, 等. 基于遗传算法的风光柴蓄复合发电系统优化设计[J]. 电网与清洁能源, 2011, 27(1): 56-59, 66. |
Zhao Jiandong, Shang Zhiyi, Wang Zishang, et al. Optimal Design of Wind-solar-diesel-battery Hybrid Power Generation System Based on Genetic Algorithm[J]. Power System and Clean Energy, 2011, 27(1): 56-59, 66. | |
19 | 丁屹峰, 杨烁, 梁安琪, 等. 基于遗传算法的混合供能系统[J]. 沈阳工业大学学报, 2019, 41(5): 501-505. |
Ding Yifeng, Yang Shuo, Liang Anqi, et al. Hybrid Energy Supply System Based on Genetic Algorithm[J]. Journal of Shenyang University of Technology, 2019, 41(5): 501-505. | |
20 | 柳玉宾, 阙亚卫, 吴政华, 等. 基于遗传算法的燃气分布式能源系统负荷优化分配[J]. 华电技术, 2018, 40(3): 1-4, 20. |
Liu Yubin, Que Yawei, Wu Zhenghua, et al. Distribution of Load Optimization of Gas Distributed Energy System Based on Genetic Algorithm[J]. Huadian Technology, 2018, 40(3): 1-4, 20. | |
21 | 陈云, 刘东, 高飞, 等. 考虑电转气环节氢能精细化利用的区域综合能源系统日前优化调度[J]. 供用电, 2021, 38(11): 59-67. |
Chen Yun, Liu Dong, Gao Fei, et al. Day-ahead Optimal Dispatching of Regional Integrated Energy System Considering Refined Utilization of Hydrogen in Power to Gas Process[J]. Distribution & Utilization, 2021, 38(11): 59-67. | |
22 | 苏慧玲, 杨世海, 陈铭明. 考虑能源效率的综合能源系统多目标优化调度[J]. 电力系统及其自动化学报, 2022, 34(2): 130-136. |
Su Huiling, Yang Shihai, Chen Mingming. Multi-objective Optimal Scheduling of Integrated Energy System Considering Energy Efficiency[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 130-136. | |
23 | 王义军, 齐岩, 蔡亦浓, 等. 计及设备变负载率特性的综合能源系统"源-荷-储"协同优化调度策略[J]. 电测与仪表, 2024, 61(7): 123-130. |
Wang Yijun, Qi Yan, Cai Yinong, et al. Source-load-storage Coordinated Optimal Dispatch Strategy of Integrated Energy System Considering the Characteristics of Equipment Variable Load Rate[J]. Electrical Measurement & Instrumentation, 2024, 61(7): 123-130. |
[1] | Ma Miaomiao, Long Zijuan, Ren Zhiwei, Cheng Yongqiang. Hierarchical Optimal Scheduling of Integrated Energy System with Electric Vehicles Based on EMPC [J]. Journal of System Simulation, 2025, 37(5): 1116-1128. |
[2] | Shi Zhihao, Shen Haihui. Simulation Platform of AGV System Scheduling Algorithms in Uncertain Environment [J]. Journal of System Simulation, 2024, 36(2): 385-404. |
[3] | Jia Dongli, Liu Keyan, Ren Zhaoying, Wang Zezhou, Tang Dongsheng. Optimal Operation Scheduling of Integrated Energy System Considering Energy Priority [J]. Journal of System Simulation, 2024, 36(12): 2771-2781. |
[4] | Wang Yudong, Hu Junjie. Peer-to-peer Energy-carbon Management Method of Multiple Integrated Energy Systems Considering Multi-agent Interaction Strategy [J]. Journal of System Simulation, 2024, 36(10): 2488-2502. |
[5] | Tianzheng Wang, Jian Tang, Heng Xia, Junfei Qiao. Hardware-in-the-loop Simulation Platform of Loop Control for Municipal Solid Waste Incineration Process [J]. Journal of System Simulation, 2023, 35(2): 241-253. |
[6] | Baiyuan Ding, Fuling Mu, Yunpeng Li, Zhongkuan Chen, Chengyu Liu. Design of System Combat Simulation Platform for Complex Electromagnetic Environment [J]. Journal of System Simulation, 2023, 35(2): 330-338. |
[7] | Liying Wang, Jialin Lin, Houqi Dong, Ming Zeng, Yuqing Wang. Optimal Dispatch of Integrated Energy System Considering Ladder-Type Carbon Trading [J]. Journal of System Simulation, 2022, 34(7): 1393-1404. |
[8] | Lixin Ma, Ying Cheng. Optimal Operation for Park Integrated Energy System Considering Interruptible Loads [J]. Journal of System Simulation, 2022, 34(4): 817-825. |
[9] | Xu Peng, Feng Guoqi, Dai Xuewu, Cui Dongliang, Wei Qilong, Li Baoxu, Li Jianming. Small-data Driven Modeling and Simulation of High-speed Train Running Time Under Limited Speeds [J]. Journal of System Simulation, 2021, 33(8): 1892-1904. |
[10] | Huang Xiaodong, Xie Kongshu, Li Ni, Yan Xuefeng, Zhao Yali. Research and Application of Simulation Support Platform for System-of-Systems Combat [J]. Journal of System Simulation, 2021, 33(8): 1914-1926. |
[11] | Chen Yuzhou, Li Yuan, Wang Qinglin, Zhang Qing, Zhang Jinyuan. Visual Simulation Platform for Visible Light Reconnaissance Load of Unmanned Aerial Vehicle [J]. Journal of System Simulation, 2021, 33(4): 910-917. |
[12] | Hu Yang, Liu Wenying, Zhu Liping, Li Xiao, Wang Weizhou. Simulation Platform for Source-load Control of Active Power Based on Modular Architecture [J]. Journal of System Simulation, 2021, 33(3): 669-678. |
[13] | Tong Jiahui, Liu Jin, Zhang Jinyuan, Zhang Yongxiang. Research on Real-time Simulation Platform Architecture Based on Multi-core Scheduling [J]. Journal of System Simulation, 2019, 31(8): 1495-1504. |
[14] | Fu Xiuwen, Yang Yongsheng. Simulation Platform for Invulnerability of Industrial Wireless Sensor Networks [J]. Journal of System Simulation, 2019, 31(7): 1342-1350. |
[15] | Yu Ying, Liang Weidong, Zhu Xiujuan, Wang Jianlin, Wang Ling. Design of Combat Simulation and Visualization System of Hypersonic Vehicle [J]. Journal of System Simulation, 2019, 31(12): 2584-2590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||