Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (12): 3189-3201.doi: 10.16182/j.issn1004731x.joss.25-FZ0720
• Papers • Previous Articles
Yang Yonghao, He Xiaoyu
Received:2025-07-25
Revised:2025-10-24
Online:2025-12-26
Published:2025-12-24
Contact:
He Xiaoyu
CLC Number:
Yang Yonghao, He Xiaoyu. Analysis of Optimal Spectral Bands for Thermal Infrared Hyperspectral Image Reconstruction Driven by Physical Simulation Model[J]. Journal of System Simulation, 2025, 37(12): 3189-3201.
| [1] | Gålfalk Magnus, Olofsson Göran, Crill Patrick, et al. Making Methane Visible[J]. Nature Climate Change, 2016, 6(4): 426-430. |
| [2] | Ouyang Xiaoying, Sun Zhongchang, Zhou Shugui, et al. Urban Land Surface Temperature Retrieval with High-spatial Resolution SDGSAT-1 Thermal Infrared Data[J]. Remote Sensing of Environment, 2024, 312: 114320. |
| [3] | Ni Li, Xu Honggen, Zhou Xiaoming. Mineral Identification and Mapping by Synthesis of Hyperspectral VNIR/SWIR and Multispectral TIR Remotely Sensed Data with Different Classifiers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3155-3163. |
| [4] | Hamedianfar Alireza, Laakso Kati, Middleton Maarit, et al. Leveraging High-resolution Long-wave Infrared Hyperspectral Laboratory Imaging Data for Mineral Identification Using Machine Learning Methods[J]. Remote Sensing, 2023, 15(19): 4806. |
| [5] | Beatriz Ribeiro da Luz, Crowley J K. Identification of Plant Species by Using High Spatial and Spectral Resolution Thermal Infrared (8.0-13.5 μm) Imagery[J]. Remote Sensing of Environment, 2010, 114(2): 404-413. |
| [6] | Smigaj Magdalena, Agarwal A, Bartholomeus Harm, et al. Thermal Infrared Remote Sensing of Stress Responses in Forest Environments: a Review of Developments, Challenges, and Opportunities[J]. Current Forestry Reports, 2024, 10(1): 56-76. |
| [7] | Veraverbeke Sander, Dennison P, Gitas Ioannis, et al. Hyperspectral Remote Sensing of Fire: State-of-the-art and Future Perspectives[J]. Remote Sensing of Environment, 2018, 216: 105-121. |
| [8] | Zelinski M, Mastin A, Castillo V, et al. Optimal Band Selection for Target Detection with a LWIR Multispectral Imager[J]. Journal of Applied Remote Sensing, 2022, 16(2): 026505. |
| [9] | Renwei Dian, Fang Leyuan, Li Shutao. Hyperspectral Image Super-resolution via Non-local Sparse Tensor Factorization[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 3862-3871. |
| [10] | Han Xiaolin, Yu Jing, Sun Weidong. Hyperspectral Image Super-resolution Based on Non-factorization Sparse Representation and Dictionary Learning[C]//2017 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE, 2017: 963-966. |
| [11] | Tang Songze, Xu Yang, Huang Lili, et al. Hyperspectral Image Super-resolution via Adaptive Dictionary Learning and Double ℓ 1 Constraint[J]. Remote Sensing, 2019, 11(23): 2809. |
| [12] | Kong Xiangyang, Zhao Yongqiang, Jonathan Cheung-Wai Chan, et al. Hyperspectral Image Restoration Via Spatial-spectral Residual Total Variation Regularized Low-rank Tensor Decomposition[J]. Remote Sensing, 2022, 14(3): 511. |
| [13] | Wang Yao, Chen Xi'ai, Han Zhi, et al. Hyperspectral Image Super-resolution Via Nonlocal Low-rank Tensor Approximation and Total Variation Regularization[J]. Remote Sensing, 2017, 9(12): 1286. |
| [14] | Xu Yang, Wu Zebin, Chanussot Jocelyn, et al. Hyperspectral Images Super-resolution via Learning High-order Coupled Tensor Ring Representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4747-4760. |
| [15] | Xiong Zhiwei, Shi Zhan, Li Huiqun, et al. HSCNN: CNN-based Hyperspectral Image Recovery from Spectrally Undersampled Projections[C]//2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE, 2017: 518-525. |
| [16] | Li Jiaojiao, Wu Chaoxiong, Song Rui, et al. Adaptive Weighted Attention Network with Camera Spectral Sensitivity Prior for Spectral Reconstruction from RGB Images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2020: 1894-1903. |
| [17] | Zhang Lei, Lang Zhiqiang, Wang Peng, et al. Pixel-aware Deep Function-mixture Network for Spectral Super-resolution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12821-12828. |
| [18] | Li Jiaojiao, Wu Chaoxiong, Song Rui, et al. Deep Hybrid 2-D-3-D CNN Based on Dual Second-order Attention with Camera Spectral Sensitivity Prior for Spectral Super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 623-634. |
| [19] | Cai Yuanhao, Lin Jing, Lin Zudi, et al. MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2022: 744-754. |
| [20] | Li Jiaojiao, Leng Yihong, Song Rui, et al. MFormer: Taming Masked Transformer for Unsupervised Spectral Reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12. |
| [21] | Du Dakuan, Gu Yanfeng, Liu Tianzhu, et al. Spectral Reconstruction from Satellite Multispectral Imagery Using Convolution and Transformer Joint Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15. |
| [22] | Borel C C. Iterative Retrieval of Surface Emissivity and Temperature for a Hyperspectral Sensor[C]//IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (cat. No.98ch36174). United States: Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1997: 546-549. |
| [23] | Borel C. Error Analysis for a Temperature and Emissivity Retrieval Algorithm for Hyperspectral Imaging Data[J]. International Journal of Remote Sensing, 2008, 29(17/18): 5029-5045. |
| [24] | Shao Honglan, Liu Chengyu, Xie Feng, et al. Noise-sensitivity Analysis and Improvement of Automatic Retrieval of Temperature and Emissivity Using Spectral Smoothness[J]. Remote Sensing, 2020, 12(14): 2295. |
| [25] | McElhinney O, Pieper M L, Manolakis D, et al. Spline Based Emissivity Retrieval for LWIR Hyperspectral Imagery[C]//Proceedings Volume 12094, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII. Bellingham: SPIE, 2022: 120940N. |
| [26] | Wang Ning, Wu Hua, Nerry Françoise, et al. Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1291-1303. |
| [27] | Ren Huazhong, Ye Xin, Nie Jing, et al. Retrieval of Land Surface Temperature, Emissivity, and Atmospheric Parameters from Hyperspectral Thermal Infrared Image Using a Feature-band Linear-format Hybrid Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. |
| [28] | Bao Fanglin, Wang Xueji, Sureshbabu S H, et al. Heat-assisted Detection and Ranging[J]. Nature, 2023, 619(7971): 743-748. |
| [29] | Li Hanchao, Xiong Pengfei, An Jie, et al. Pyramid Attention Network for Semantic Segmentation[EB/OL]. (2018-11-25)[2025-05-25].. |
| [30] | Chi Chong-Yung, Chen Chii-Horng, Feng Chih-Chun, et al. Fundamentals of Statistical Signal Processing[M]//Chong-Yung Chi, Chii-Horng Chen, Chih-Chun Feng, et al. Blind Equalization and System Identification: Batch Processing Algorithms, Performance and Applications. London: Springer London, 2006: 83-182. |
| [31] | Pukelsheim F. Optimal Design of Experiments[M]. Philadelphia, PA, USA: SIAM, 2006. |
| [32] | Hager W W. Updating the Inverse of a Matrix[J]. SIAM Review, 1989, 31(2): 221-239. |
| [33] | Bao Fanglin. HADAR[EB/OL]. (2025-09-11) [2025-09-22]. . |
| [34] | Developers Cycles. Cycles[EB/OL]. [2025-09-22]. . |
| [1] | Liu Xuan, Li Xiangyang, He Fang, Zhao Jianwei, Zhang Fenggan. Hyperspectral RX Anomaly Detection Method Based on the Fusion of Spatial and Spectral Feature [J]. Journal of System Simulation, 2021, 33(12): 2891-2900. |
| [2] | Song Xiaorui, Zou Ling, Wu Lingda, Xu Wanpeng. Hyperspectral Image Anomaly Detection Based on Background Reconstruction [J]. Journal of System Simulation, 2020, 32(7): 1287-1293. |
| [3] | Shi Xiangbin, Zhong Jian, Liu Cuiwei, Liu Fang, Zhang Deyuan. Deep Learning Method for Hyperspectral Remote Sensing Images with Small Samples [J]. Journal of System Simulation, 2018, 30(7): 2744-2752. |
| [4] | Wang Kun, Zhang Yang, Song Shengbo, Zhuge Jingchang. Infrared Image Segmentation Based on Improved Dimensional OTSU and Genetic Algorithm [J]. Journal of System Simulation, 2017, 29(6): 1229-1236. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||