Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (11): 2724-2740.doi: 10.16182/j.issn1004731x.joss.25-0409
• Papers • Previous Articles
Zhou Congling1, Wang Chunpeng1, Xie Qiwei2, Wang Yongqiang1, Shen Lijun3
Received:2025-05-12
Revised:2025-09-22
Online:2025-11-18
Published:2025-11-27
Contact:
Shen Lijun
CLC Number:
Zhou Congling, Wang Chunpeng, Xie Qiwei, Wang Yongqiang, Shen Lijun. Parking Space Reasoning Model for Complex Scenarios[J]. Journal of System Simulation, 2025, 37(11): 2724-2740.
| [1] | 国家市场监督管理总局, 国家标准化管理委员会. 智能网联汽车 组合驾驶辅助系统技术要求及试验方法 第1部分: 单车道行驶控制: [S]. 北京: 中国标准出版社, 2024: 8-9. |
| State Administration for Market Regulation, National Standardization Administration. Intelligent and Connected Vehicle-technical Requirements and Testing Methods for Combined Driver Assistance System-part 1: Single-lane Manoeuvre: [S]. Beijing: Standards Press of China, 2024: 8-9. | |
| [2] | Xie Qiwei, Long Qian, Li Jianping, et al. Application of Intelligence Binocular Vision Sensor: Mobility Solutions for Automotive Perception System[J]. IEEE Sensors Journal, 2024, 24(5): 5578-5592. |
| [3] | Xie Qiwei, Hu Xiyuan, Ren Lei, et al. A Binocular Vision Application in IoT: Realtime Trustworthy Road Condition Detection System in Passable Area[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 973-983. |
| [4] | 王若萱, 吴建平, 徐辉. 自动驾驶汽车感知系统仿真的研究及应用综述[J]. 系统仿真学报, 2022, 34(12): 2507-2521. |
| Wang Ruoxuan, Wu Jianping, Xu Hui. Overview of Research and Application on Autonomous Vehicle Oriented Perception System Simulation[J]. Journal of System Simulation, 2022, 34(12): 2507-2521. | |
| [5] | 王檀彬, 陈无畏, 李进, 等. 多传感器融合的视觉导航智能车避障仿真研究[J]. 系统仿真学报, 2009, 21(4): 1015-1019. |
| Wang Tanbin, Chen Wuwei, Li Jin, et al. Simulations of Obstacle Avoidance for Intelligent Vehicles Based on Vision Navigation and Multi-sensor Fusion[J]. Journal of System Simulation, 2009, 21(4): 1015-1019. | |
| [6] | 叶继华, 时淑霞, 李汉曦, 等. 一种结合深度学习和随机森林的地平线检测方法[J]. 系统仿真学报, 2018, 30(7): 2507-2514. |
| Ye Jihua, Shi Shuxia, Li Hanxi, et al. A Horizon Detection Method Based on Deep Learning and Random Forest[J]. Journal of System Simulation, 2018, 30(7): 2507-2514. | |
| [7] | 蒋弘毅, 王永娟, 康锦煜. 目标检测模型及其优化方法综述[J]. 自动化学报, 2021, 47(6): 1232-1255. |
| Jiang Hongyi, Wang Yongjuan, Kang Jinyu. A Survey of Object Detection Models and Its Optimization Methods[J]. Acta Automatica Sinica, 2021, 47(6): 1232-1255. | |
| [8] | 罗会兰, 张云. 基于深度网络的图像语义分割综述[J]. 电子学报, 2019, 47(10): 2211-2220. |
| Luo Huilan, Zhang Yun. A Survey of Image Semantic Segmentation Based on Deep Network[J]. Acta Electronica Sinica, 2019, 47(10): 2211-2220. | |
| [9] | Zhang Lin, Huang Junhao, Li Xiyuan, et al. Vision-based Parking-slot Detection: a DCNN-based Approach and a Large-scale Benchmark Dataset[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5350-5364. |
| [10] | Zinelli Andrea, Musto Luigi, Pizzati Fabio. A Deep-learning Approach for Parking Slot Detection on Surround-view Images[C]//2019 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE, 2019: 683-688. |
| [11] | Zheng Ruitao, Lian Shikang, Liang Weihao, et al. Center Keypoint for Parking Slot Detection with Self-calibrated Convolutions Network[C]//2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE, 2022: 305-310. |
| [12] | 张宝军, 王钊璇, 李孰非. 基于改进卷积神经网络的车位角检测算法研究[J]. 传感器与微系统, 2023, 42(6): 62-65, 69. |
| Zhang Baojun, Wang Zhaoxuan, Li Shufei. Research on Parking Angle Detection Algorithm Based on Improved CNN[J]. Transducer and Microsystem Technologies, 2023, 42(6): 62-65, 69. | |
| [13] | Jae Kyu Suhr, Gi Jung Ho. End-to-end Trainable One-stage Parking Slot Detection Integrating Global and Local Information[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4570-4582. |
| [14] | Wang Yinan, Guan Yingzhou, Cao Rongchuan. DetPS: A Fully Convolutional End-to-end Parking Slot Detector[C]//2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). Piscataway: IEEE, 2022: 1051-1056. |
| [15] | Yu Zhuoping, Gao Zhong, Chen Hansheng, et al. SPFCN: Select and Prune the Fully Convolutional Networks for Real-time Parking Slot Detection[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE, 2020: 445-450. |
| [16] | Jang Chulhoon, Sunwoo Myoungho. Semantic Segmentation-based Parking Space Detection with Standalone Around View Monitoring System[J]. Machine Vision and Applications, 2019, 30(2): 309-319. |
| [17] | Jiang Wei, Wu Yan, Guan Linting, et al. DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block[C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2019: 5887-5892. |
| [18] | Jian Dehui, Lin Changhong. Vision-based Parking Slot Detection Based on End-to-end Semantic Segmentation Training[C]//2020 IEEE International Conference on Consumer Electronics (ICCE). Piscataway: IEEE, 2020: 1-4. |
| [19] | Lai Cong, Yang Qingyu, Guo Yixin, et al. Semantic Segmentation of Panoramic Images for Real-time Parking Slot Detection[J]. Remote Sensing, 2022, 14(16): 3874. |
| [20] | Huang Junhao, Zhang Lin, Shen Ying, et al. DMPR-PS: A Novel Approach for Parking-slot Detection Using Directional Marking-point Regression[C]//2019 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2019: 212-217. |
| [21] | Min Chen, Xu Jiaolong, Xiao Liang, et al. Attentional Graph Neural Network for Parking-slot Detection[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3445-3450. |
| [22] | Ko Yeongmin, Lee Younkwan, Azam Shoaib, et al. Key Points Estimation and Point Instance Segmentation Approach for Lane Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8949-8958. |
| [23] | Newell A, Yang Kaiyu, Deng Jia. Stacked Hourglass Networks for Human Pose Estimation[C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 483-499. |
| [24] | Zheng Tu, Fang Hao, Zhang Yi, et al. RESA: Recurrent Feature-shift Aggregator for Lane Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3547-3554. |
| [25] | Sunkara R, Luo Tie. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-resolution Images and Small Objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2023: 443-459. |
| [26] | Yang Zhendong, Li Zhe, Jiang Xiaohu, et al. Focal and Global Knowledge Distillation for Detectors[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 4633-4642. |
| [27] | Hu Jie, Shen Li, Sun Gang. Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
| [28] | Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007. |
| [29] | Goutte Cyril, Gaussier Eric. A Probabilistic Interpretation of Precision, Recall and F-score, with Implication for Evaluation[C]//Advances in Information Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 345-359. |
| [1] | Feng Zhiyuan, Chen Ying. Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning [J]. Journal of System Simulation, 2025, 37(6): 1499-1511. |
| [2] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
| [3] | Zhihao Zhu, Yan Wang, Zhicheng Ji. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression [J]. Journal of System Simulation, 2022, 34(12): 2575-2583. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||