Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (3): 632-645.doi: 10.16182/j.issn1004731x.joss.21-1177
• Papers • Previous Articles Next Articles
Guangqiu Huang(), Xixuan Zhao, Qiuqin Lu
Received:
2021-11-16
Revised:
2021-12-30
Online:
2023-03-30
Published:
2023-03-22
CLC Number:
Guangqiu Huang, Xixuan Zhao, Qiuqin Lu. Calculation of Optimal VOCs Emission Reduction Based on Improved SEIRS Model in Cloud Environment[J]. Journal of System Simulation, 2023, 35(3): 632-645.
Table 2
Time complexity calculation table of the SEIRS-CE algorithm
操作 | 时间复杂度 | 最多循环次数 |
---|---|---|
初始化 | O(6n+5(n+1)N+2n2N) | 1 |
计算Si (t), Ei (t),Ii (t), Ri (t) | O(7) | (G+N+3)N |
S-S、 S-E、 E-E、 E-I、 E-S、 I-I、 I-R、 I-S、 R-R、 R-E、 R-S | O((N+5+4)nE0/18) | (G+N+7)N |
状态保持 | O((1-5E0/12)n) | (G+N+7)N |
目标函数计算 | O(n)~O(n2) | (G+N+7)N |
生长算子 | O(3n) | (G+N+7)N |
结果输出 | O(n) | 1 |
Table 6
Parameters of 5 optimization algorithms
优化算法 | 参数 |
---|---|
DE | 变异因子F=0.5,交叉概率=0.3,每个种群中的生物量n=13,种群数量N=100 |
GA | 变异概率=0.01,每个种群中的生物量n=13,种群数量N=100 |
PSO | 加速系数c1=c2=0.5,粒子维数n=13,粒子数N=100 |
AFSA | 鱼的最大感知范围=0.3,最大位移比例=0.5,感知范围衰减系数=0.98,拥挤度阈值=0.5,最大尝试捕食次数=100,每个种群中的生物量n=13,种群数量N=100 |
CS | 鸟巢数目N=100,寻优维数n=13,鸟蛋被发现概率Pa=0.25,β=1 |
Table 7
Average value of optimal emission reduction scheme at each monitoring point in January 2021
监测点编码 | SEIRS-CE | DE | GA | PSO | AFSA | CS |
---|---|---|---|---|---|---|
标准差 | 3.285 4×10-3 | 4.267 5×10-3 | 3.897 2×10-3 | 5.608 5×10-2 | 6.589 2×10-4 | 3.488 3×10-3 |
1462A | 1.166 4 | 1.078 4 | 0.825 6 | 1.079 0 | 1.064 0 | 1.023 7 |
1463A | 1.059 4 | 1.032 0 | 0.907 9 | 0.941 0 | 1.013 8 | 1.022 9 |
1464A | 1.193 9 | 0.500 0 | 1.350 7 | 0.566 9 | 1.072 9 | 0.933 4 |
1465A | 1.094 6 | 1.081 9 | 0.862 1 | 0.941 1 | 1.213 8 | 1.023 9 |
1466A | 1.115 6 | 1.079 4 | 0.852 3 | 0.988 3 | 1.153 7 | 1.023 2 |
1467A | 1.203 9 | 1.082 1 | 1.183 4 | 1.012 1 | 1..071 1 | 1.023 9 |
1468A | 1.249 5 | 1.082 1 | 0.990 4 | 0.932 4 | 1.144 7 | 1.021 2 |
1469A | 1.089 7 | 0.983 8 | 1.007 2 | 0.799 9 | 0.802 9 | 0.924 6 |
1470A | 1.162 0 | 1.081 9 | 1.030 9 | 0.828 3 | 1.152 4 | 1.023 8 |
1471A | 1.083 8 | 1.081 1 | 0.823 8 | 1.009 4 | 0.902 9 | 1.023 3 |
1472A | 1.037 9 | 1.037 9 | 1.052 3 | 0.769 8 | 0.514 4 | 0.979 8 |
1473A | 1.078 1 | 1.081 8 | 1.062 3 | 0.863 9 | 0.973 8 | 1.023 6 |
1474A | 0.920 1 | 1.078 5 | 0.872 8 | 1.094 9 | 1.149 4 | 1.018 7 |
1 | 竹涛, 朱晓晶, 牛文凤, 等. 国内外挥发性有机物排放标准对比研究[J]. 矿业科学学报, 2020, 5(2): 209-218. |
Zhu Tao, Zhu Xiaojing, Niu Wenfeng, et al. Comparative Study of Domestic and Foreign Emission Standards for Volatile Organic Compounds[J]. Journal of Mining Science and Technology, 2020, 5(2): 209-218. | |
2 | 王伶瑞, 李海燕, 陈程, 等. 长三角北部沿海城市2018年大气VOCs分布特征[J]. 环境科学学报, 2020, 40(4): 1385-1400. |
Wang Lingrui, Li Haiyan, Chen Cheng, et al. Distributions of VOCs in a Coastal City in the Northern Yangtze River Delta During 2018[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1385-1400. | |
3 | 林燕芬, 段玉森, 高宗江. 基于VOCs加密监测的上海典型臭氧污染过程特征及成因分析[J]. 环境科学学报, 2019, 39(1): 126-133. |
Lin Yanfang, Duan Yusen, Gao Zongjiang. Typical Ozone Pollution Process and Source Identification in Shanghai Based on VOCs Intense Measurement[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 126-133. | |
4 | Cbabc D, Nva B, Jc E, et al. Gestational Exposure to Volatile Organic Compounds (VOCs) in Northeastern British Columbia, Canada: A Pilot Study[J]. Environment International (S0160-4120), 2018, 110: 131-138. |
5 | 林旭, 严仁嫦, 金嘉佳, 等. 基于SOA和O3生成潜势的杭州市PM2.5和O3协同控制[J]. 环境科学, 2022, 43(4): 1799-1807. |
Lin Xu, Yan Renchang, Jin Jiajia, et al. Coordinated Control of PM2.5 and O3 in Hangzhou Based on SOA and O3 Formation Potential[J]. Environmental Science, 2022, 43(4): 1799-1807. | |
6 | Klimont Z, Cofala J, Schöpp W, et al. Projections of SO2, NOx, NH3 and VOC Emissions in East Asia up to 2030[J]. Water, Air, and Soil Pollution (S0049-6979), 2001, 130(1): 193-198. |
7 | Streets D G, Waldhoff S T. Present and Future Emissions of Air Pollutants in China: SO2, NOx, and CO[J]. Atmospheric Environment (S1352-2310), 2000, 34(3): 363-374. |
8 | 刘扬, 王颖, 刘灏, 等. 基于WRF-Chem模拟验证的天水市主城区大气污染源排放清单[J]. 中国环境科学, 2022, 42(1): 32-42. |
Liu Yang, Wang Ying, Liu Hao, et al. Air Pollutants Emission Inventory for the Main Urban Area of Tianshui City Based on Verification by WRF-Chem Simulation[J]. China Environmental Science, 2022, 42(1): 32-42. | |
9 | 王燕军, 黄志辉, 唐祎骕, 等. 我国非道路移动源排放清单估算及技术减排潜力分析[J]. 环境与可持续发展, 2021, 46(4): 64-69. |
Wang Yanjun, Huang Zhihui, Tang Yisu, et al. Estimation on Non-road Mobile Source Emission Inventory in 2017 and Its Technological Reduction Potential Analysis[J]. Environment and Sustainable Development,2021, 46(4): 64-69. | |
10 | 陈天雷, 吴敏, 潘成珂, 等. 基于前体物多情景排放的兰州市2030年夏季臭氧预测[J]. 环境科学, 2022, 43(5): 2403-2414. |
Chen Tianlei, Wu Min, Pan Chengke, et al. Ozone Simulation of Lanzhou City Based on Multi-scenario Emission Forecast of Ozone Precursors in the Summer of 2030[J].Environmental Science, 2022, 43(5): 2403-2414. | |
11 | 谢放尖, 史之浩, 李婧祎, 等. 基于达标约束的南京市环境空气质量情景模拟[J]. 环境科学, 2019, 40(7): 2967-2976. |
Xie Fangjian, Shi Zhihao, Li Jingyi, et al. Scenario Simulation Study Constrained by the Ambient Air Quality Standards in Nanjing[J]. Environmental Science, 2019, 40(7): 2967-2976. | |
12 | Zhang Y N, Xue L K, Li H Y, et al. Source Apportionment of Regional Ozone Pollution Observed at Mount Tai, North China: Application of Lagrangian Photochemical Trajectory Model and Implications for Control Policy[J]. Journal of Geophysical Research: Atmospheres (S2169-897X), 2021, 126(6): e2020JD033519. |
13 | Kim M J, Park R J, Ho C H, et al. Future Ozone and Oxidants Change under the RCP Scenarios[J]. Atmospheric Environment (S1352-2310), 2015, 101: 103-115. |
14 | Zhu J, Liao H. Future Ozone Air Quality and Radiative Forcing over China Owing to Future Changes in Emissions under the Representative Concentration Pathways (RCPs)[J]. Journal of Geophysical Research Atmospheres (S2169-897X), 2016, 121(4): 1978-2001. |
15 | 杨丹丹, 王体健, 李树, 等. 基于空气质量模式和数学规划模型的城市PM2.5达标策略——以临汾为例[J]. 中国环境科学, 2021, 41(8): 3493-3501. |
Yang Dandan, Wang Tijian, Li Shu, et al. Urban PM2.5 Compliance Strategy Based on Air Quality and Mathematical Planning Model[J]. China Environmental Science, 2021, 41(8): 3493-3501. | |
16 | 陆秋琴, 何舒, 黄光球. 区域联防联控挥发性有机物(VOCs)最优减排方案研究[J]. 环境科学学报, 2021, 41(5): 1764-1773. |
Lu Qiuqin, He Shu, Huang Guangqiu. Research on the Best Emission Reduction Scheme for Regional Joint Prevention and Control of Volatile Organic Compounds (VOCs)[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1764-1773. | |
17 | 黄梦瑶, 黄丽达, 袁宏永, 等. 社交隔离对COVID-19的发展影响[J]. 清华大学学报(自然科学版), 2021, 61(2): 96-103. |
Huang Mengyao, Huang Lida, Yuan Hongyong, et al. Effects of Social Isolation on COVID-19 Trends[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2): 96-103. | |
18 | 程穆阳. 高斯模型在中小城市多点源大气扩散模拟中的应用研究[D]. 哈尔滨: 哈尔滨师范大学, 2020. |
Cheng Muyang. Research on the Application of Gauss Model in Multi-point Atmospheric Diffusion Simulation of Small and Medium-sized Cities-A Case Study of Suihua City[D]. Harbin: Harbin Normal University, 2020. | |
19 | 张瑞锋, 李欣秋. 基于SWN-SEIRS模型的供应链金融信用风险传染测度研究[J]. 财经理论与实践, 2021, 42(2): 20-26. |
Zhang Ruifeng, Li Xinqiu. Research on Credit Risk Contagion Measure of Supply Chain Finance Based on SWN-SEIRS Model[J]. The Theory and Practice of Finance and Economics, 2021, 42(2): 20-26. | |
20 | Kermack W O, Mckendrick A G. Contributions to the Mathematical Theory of Epidemics[J]. Proceedings of the Royal Society of London Series A (S0950-1207), 1927, A115: 700-721. |
21 | 杨伟. 传染病动力学的一些数学模型及其分析[D]. 上海: 复旦大学, 2010. |
Yang Wei. Some Mathematical Models and Analysis of Infectious Disease Dynamics[D]. Shanghai: Fudan University, 2010. | |
22 | Iisufescu M. Finite Markov Processes and Their Applications[M]. Wiley: Chichester, 1980. |
23 | 黄光球, 陆秋琴. 具有跨物种多级传播特征的包虫病优化算法[J]. 计算机科学与探索, 2020, 14(6): 1054-1069. |
Huang Guangqiu, Lu Qiuqin. Hydatid Disease Optimization Algorithm with Multistage Cross-Species Transmission Characteristics[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1054-1069. | |
24 | Li Y X, Shi B D, Pan X R. Ballistic Target Signal Separation Based on Differential Evolution Algorithm[J]. Journal of Physics: Conference Series (1742-6588), 2021, 1883(1): 012005. |
25 | Lim J Y, Kim T W, Wang X Y, et al. Evaluation of Compressive Strength of Sustainable Concrete Using Genetic Algorithm Assisted Artificial Neural Networks[J]. Materials Science Forum (S0255-5476), 2021, 1029: 83-88. |
26 | Bangyal W H, Hameed A, Alosaimi W, et al. A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems[J]. Computational Intelligence and Neuroscience (S1687-5265), 2021, 2021: 6628889. |
27 | Liu Yi, Feng Xuesong, Ding Chuanchen, et al. Electric Transit Network Design by an Improved Artificial Fish-Swarm Algorithm[J]. Journal of Transportation Engineering, Part A: Systems (S2473-2907), 2020, 146(8): 04020071. |
28 | 张晓凤, 王秀英. 布谷鸟搜索算法综述[J]. 计算机工程与应用, 2018, 54(18): 8-16. |
Zhang Xiaofeng, Wang Xiuying. Survey of Cuckoo Search Algorithm[J]. Computer Engineering and Applications, 2018, 54(18): 8-16. |
[1] | Jianguo Cao. Development Opportunities and Application Prospects of Aero-Engine Simulation Technology under Digital Transformation [J]. Journal of System Simulation, 2023, 35(1): 1-10. |
[2] | Qirui Li, Xinyi Peng. Job Scheduling and Simulation in Cloud Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(2): 258-268. |
[3] | Zhang Huili, Li Zhihe. A Cloud Service Composition Optimization Based on HNN [J]. Journal of System Simulation, 2019, 31(11): 2335-2343. |
[4] | Zhang Tianrui, Qu Chuansheng, Wu Baoku, Xu Jianan. Modeling and Simulation of Complex Equipment Health Management System Based on Cloud Computing [J]. Journal of System Simulation, 2019, 31(11): 2356-2365. |
[5] | Li Qiang, Liu Xiaofeng. Cloud Job Scheduling Model Based on Improved Plant Growth Algorithm [J]. Journal of System Simulation, 2018, 30(12): 4649-4658. |
[6] | Guo Songhui, Li Qingbao, Sun Lei, Gong Xuerong, Yang Tianchi. Performance Modeling of Cryptographic Service System Virtualization Based on ISSM [J]. Journal of System Simulation, 2017, 29(8): 1692-1701. |
[7] | Wan Cong, Wang Cuirong, Wang Cong. QoS-aware Scheduling for Data Intensive Workflow [J]. Journal of System Simulation, 2016, 28(3): 549-558. |
[8] | Jiang Wuxue, Hu Xuanzi, Liu Minxia, Chen Yuqiang. Information Collaboration Model of Cloud Computing Supply Chain Based on Multi-Agent [J]. Journal of System Simulation, 2016, 28(1): 51-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||