Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (10): 2150-2160.doi: 10.16182/j.issn1004731x.joss.23-FZ0793
• Papers • Previous Articles Next Articles
Wu Peng1(), Yang Zongmo2(
), Jing Qianfeng3, Li Yulin1
Received:
2023-07-01
Revised:
2023-08-23
Online:
2023-10-30
Published:
2023-10-26
Contact:
Yang Zongmo
E-mail:331851134@qq.com;1187291403@qq.com
CLC Number:
Wu Peng, Yang Zongmo, Jing Qianfeng, Li Yulin. A Hybrid Empirical Method for Fast Modeling of Ship Manoeuvring Motion[J]. Journal of System Simulation, 2023, 35(10): 2150-2160.
Table 10
Hydrodynamic coefficients groups
指标 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | 实船 |
---|---|---|---|---|---|---|---|---|
28.658 | 15.569 | 27.612 | 22.083 | Nan | 11.926 | 3.234 | \ | |
AD(+35°, 122) | 0.235 | 0.175 | 0.185 | 0.113 | 0.541 | 0.078 | 0.078 | 468 m |
TR(+35°, 122) | 0.520 | 0.196 | 0.790 | 0.669 | 0.737 | 0.206 | 0.206 | 244 m |
TD(+35°, 122) | 0.373 | 0.071 | 0.492 | 0.336 | 1.053 | 0.083 | 0.083 | 536 m |
AD(-35°, 122) | 0.284 | 0.134 | 0.230 | 0.158 | 0.525 | 0.136 | 0.102 | 483 m |
TR(-35°, 122) | 0.583 | 0.261 | 0.832 | 0.723 | 0.629 | 0.295 | 0.008 | 253 m |
TD (-35°, 122) | 0.489 | 0.049 | 0.551 | 0.418 | Nan | 0.233 | 0.096 | 590 m |
AD(+35°, 90) | 0.187 | 0.056 | 0.131 | 0.056 | 0.607 | 0.014 | 0.100 | 458 m |
TR(+35°, 90) | 0.516 | 0.410 | 0.784 | 0.660 | 0.783 | 0.173 | 0.296 | 244 m |
TD(+35°, 90) | 0.351 | 0.010 | 0.471 | 0.305 | 1.150 | 0.028 | 0.260 | 517 m |
0.219 | 0.033 | 0.161 | 0.085 | 0.597 | 0.052 | 0.034 | 465 m | |
TR( | 0.580 | 0.479 | 0.821 | 0.710 | 0.623 | 0.271 | 0.112 | 262 m |
TD( | 0.349 | 0.083 | 0.432 | 0.255 | Nan | 0.003 | 0.255 | 472 m |
OSA1st(+20°/20°) | 2.124 | 1.272 | 2.078 | 1.668 | 0.076 | 0.869 | 0.166 | 8.2° |
OSA2nd(+20°/20°) | 1.406 | 0.904 | 2.350 | 1.661 | 0.146 | 0.856 | 0.087 | 7.7° |
OSA1st( | 2.153 | 1.486 | 2.442 | 1.956 | 0.016 | 1.061 | 0.066 | 7.8° |
OSA2nd( | 1.023 | 0.870 | 2.389 | 1.614 | 0.198 | 0.650 | 0.218 | 8.4° |
OSA1st(+10°/10°) | 5.508 | 2.396 | 2.743 | 2.552 | 0.903 | 2.206 | 0.028 | 2.7° |
OSA2nd(+10°/10°) | 4.268 | 2.706 | 4.154 | 3.405 | 0.277 | 1.773 | 0.351 | 4.3° |
OSA1st(-10°/10°) | 3.000 | 1.589 | 1.887 | 1.727 | 0.394 | 1.408 | 0.273 | 3.9° |
OSA2nd(-10°/10°) | 4.489 | 2.390 | 3.689 | 3.013 | 0.182 | 1.528 | 0.417 | 4.4° |
1 | 杨帆, 刘佳仑, 于淳, 等. 虚实融合的船舶智能航行测试技术[J]. 中国航海, 2022, 45(3): 113-122. |
Yang Fan, Liu Jialun, Yu Chun, et al. Test Technology for Intelligent Navigation With Mix of Virtual and Actual Reality[J]. Navigation of China, 2022, 45(3): 113-122. | |
2 | 胡一鹏, 闫昭琨, 刘佳仑, 等. 智能船艇虚实融合测试验证技术现状与展望[J]. 船舶工程, 2022, 44(4): 4-13. |
3 | 张秀凤, 王晓雪, 孟耀, 等. 船舶运动建模与仿真研究进展及未来发展趋势[J]. 大连海事大学学报, 2021, 47(1): 1-8. |
Zhang Xiufeng, Wang Xiaoxue, Meng Yao, et al. Research Progress and Future Development Trend of Ship Motion Modeling and Simulation[J]. Journal of Dalian Maritime University, 2021, 47(1): 1-8. | |
4 | Shaher Sabit A. Regression Analysis of the Resistance Results of the B.S.R.A. Series[J]. International Shipbuilding Progress, 1971, 18(197): 3-17. |
5 | Holtrop J, Mennen G G J. An Approximate Power Prediction Method[J]. International Shipbuilding Progress, 1982, 29(335): 166-170. |
6 | Nikolopoulos L, Boulougouris E. A Study on the Statistical Calibration of the Holtrop and Mennen Approximate Power Prediction Method for Full Hull Form, Low Froude Number Vessels[J]. Journal of Ship Production and Design, 2019, 35(1): 41-68. |
7 | 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6): 21-29, 36. |
Zhou Zhaoming, Sheng Ziyin, Feng Wushi. On Manoeuvrability Prediction of Multipurpose Cargo Ship[J]. Ship Engineering, 1983(6): 21-29, 36. | |
8 | Kristensen H O, Lützen M. Prediction of Resistance and Propulsion Power of Ships[J]. Clean Shipping Currents, 2012, 1(6): 1-52. |
9 | Kijima K, Katsuno T, Nakiri Y, et al. On the Manoeuvring Performance of a Ship With Theparameter of Loading Condition[J]. Journal of the Society of Naval Architects of Japan, 1990, 1990(168): 141-148. |
10 | Harvald S A. Resistance and Propulsion of Ships[M]. Malabar, FL, USA: Krieger Publishing Company, 1992. |
11 | Kulczyk J. Propeller-hull Interaction in Inland Navigation Vessel[J]. WIT Transactions on The Built Environment, 1995, 12: 10298. |
12 | Yoshimura Y, Nomoto K. Modeling of Manoeuvring Behaviour of Ships With a Propeller Idling, Boosting and Reversing[J]. Journal of the Society of Naval Architects of Japan, 1978, 1978(144): 57-69. |
13 | Yasukawa H, Yoshimura Y. Introduction of MMG Standard Method for Ship Maneuvering Predictions[J]. Journal of Marine Science and Technology, 2015, 20(1): 37-52. |
14 | Yoshimura Y, Masumoto Y. Hydrodynamic Database and Manoeuvring Prediction Method With Medium High-speed Merchant Ships and Fishing Vessels[C]//International MARSIM Conference. [S.l.]: [s.n.], 2012: 1-9. |
15 | Yoshimura Y, Ma Ning. Manoeuvring Prediction of Fishing Vessels[C]//MARSIM'03 Conference Proceedings. Tokyo: The Society of Naval Architects of Japan, 2003: pRC-29- 1-10. |
16 | Khanfir S, Hasegawa K, Nagarajan V, et al. Manoeuvring Characteristics of Twin-rudder Systems: Rudder-hull Interaction Effect on the Manoeuvrability of Twin-rudder Ships[J]. Journal of Marine Science and Technology, 2011, 16(4): 472-490. |
17 | Kijima K. On the Practical Prediction Method for Ship Manoeuvring Characteristics[J]. Transactions of the West-Japan Society of Naval Architects, 2002: 21-31. |
18 | Lee T. On an Empirical Prediction of Hydrodynamic Coefficients for Modern Ship Hulls[J]. Proceedings of MARSIM 2003, 2003: RC-1-1-RC-1-8. |
19 | Khanfir S, Hasegawa K, Lee S K, et al. Mathematical Model for Maneuverability and Estimation of Hydrodynamic Coefficients of Twin-propeller Twin-rudder Ship[C]//Conference Proceedings. Japan Society of Naval Architects and Ocean Engineers. Tokyo: The Japan Society of Naval Architects and Ocean Engineers, 2008: 57-60. |
20 | 贾欣乐, 杨盐生. 船舶运动数学模型-机理建模与辨识建模[M]. 大连: 大连海事大学出版社, 1999. |
21 | Ankudinov V, Kaplan P, Jacobsen B, et al. Assessment and Principal Structure of the Modular Mathematical Model for Ship Maneuverability Prediction and Real-time Maneuvering Simulations[C]//International Conference on Marine Simulation and Ship Manoeuvrability. Tolado: AMO, 1993: 661-662. |
22 | Yasukawa H, Sakuno R, Yoshimura Y. Practical Maneuvering Simulation Method of Ships Considering the Roll-coupling Effect[J]. Journal of Marine Science and Technology, 2019, 24(4): 1280-1296. |
23 | 张秀凤. 航海模拟器中六自由度船舶运动数学模型的研究[D]. 大连: 大连海事大学, 2009. |
24 | Fujii H, Tsuda T. Experimental Researches on Rudder Performance (3)[J]. Journal of Zosen Kiokai, 1962, 1962(111): 51-58. |
25 | Aoki I, Kijima K, Furukawa Y, et al. On the Prediction Method for Maneuverability of a Full Scale Ship[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2006, 3: 157-165. |
26 | Hasegawa K. On a Performance Criterion of Autopilot Navigation[J]. Journal of the Kansai Society of Naval Architects, Japan, 1980, 178: 93-103. |
27 | Matsumoto N, Suemitsu K. Interference Effects between the Hull, Propeller and Rudder of a Hydrodynamic Mathematical Model in Maneuvering Motion[J]. Naval Architecture and Ocean Engineering, 1984, 22: 114-126. |
28 | Kang D, Hasegawa K. Prediction Method of Hydrodynamic Forces Acting on the Hull of a Blunt-body Ship in the Even Keel Condition[J]. Journal of Marine Science and Technology, 2007, 12(1): 1-14. |
29 | Inoue S, Hirano M, Kijima K, et al. A Practical Calculation Method of Ship Maneuvering Motion[J]. International Shipbuilding Progress, 1981, 28(325): 207-222. |
30 | Matsunaga M. Method of Predicting Ship Manoeuvrability in Deep and Shallow Waters as a Function of Loading Condition[J]. Technical Bulletin of Nippon Kaiji Kyokai, 1993, 11: 51-59. |
31 | Norrbin N H. Theory and Observations on the Use of a Mathematical Model for Ship Manoeuvring in Deep and Confined Waters[C]//Proceedings of the 8th Symposium on Naval Hydrodynamics. Göteborg, Sweden: Swedish State Shipbuilding Experimental Tank, 1971: 807-905. |
32 | Smitt L W, Chislett M S. Course Stability While Stopping[J]. Journal of Mechanical Engineering Science, 1972, 14(7): 181-185. |
33 | Clarke D. The Application of Manoeuvring Criteria in Hull Design Using Linear Theory[J]. Trans RINA, 1983, 125: 45-68. |
34 | Ankudinov V, Jakobsen B. Physically Based Maneuvering Model for Simulations and Test Evaluations[C]//International conference on marine simulation and ship maneuverability (MARSIM'06). Terschelling, The Netherlands: [s.n.], 2006: M-4-1-M-4-16. |
35 | Lewis G D W. A Computer Program to Predict Ship Maneuvering in the Horizontal Plane: Ship Science Report SS 2201[R]. Southampton, United Kingdom: University of Southampton, 1985: 1-15. |
36 | 刘正江. 倒车停船性能实用预报的研究[J]. 大连海运学院学报, 1987, 13(3): 55-64. |
Liu Zhengjiang. Practical Prediction of Ship Stopping by Reversing Propeller[J]. Journal of Dalian Marine College, 1987, 13(3): 55-64. | |
37 | 景乾峰, 神和龙, 尹勇. 一种基于虚拟现实系统的船舶数字孪生框架[J]. 北京交通大学学报, 2020, 44(5): 117-124. |
Jing Qianfeng, Shen Helong, Yin Yong. A Ship Digital Twin Framework Based on Virtual Reality System[J]. Journal of Beijing Jiaotong University, 2020, 44(5): 117-124. | |
38 | Lee J H, Nam Y S, Kim Y, et al. Real-time Digital Twin for Ship Operation in Waves[J]. Ocean Engineering, 2022, 266, Part 2: 112867. |
[1] | Li Dongsheng, Liu Ye, Song Yankan, Shen Chen. Electromagnetic Transient Equivalent Modeling Method for Wind Power Clusters Adapted to Expected Faults [J]. Journal of System Simulation, 2023, 35(10): 2101-2112. |
[2] | Chen Shanshan, Wang Hongzhi, Xia Tian. Key Technology and Application of Digital Twin Modeling for MRI [J]. Journal of System Simulation, 2023, 35(10): 2122-2132. |
[3] | Liu Lu, Li Wenxin, Song Xiao, Sun Bingli, Gong Guanghong. A Fuzzy Group Decision-making-based Method for Green Supplier Selection and Order Allocation [J]. Journal of System Simulation, 2023, 35(10): 2133-2149. |
[4] | Zou Mengfan, He Xiaoyu. Modeling and Analysis on Scattering Characteristics Automatic Driving Radar Bands in Rainy Environment [J]. Journal of System Simulation, 2023, 35(10): 2161-2169. |
[5] | Zhang Tianrui, Niu Huiyuan, Xie Wei. Integrated Scheduling Simulation Based on Improved Moth Flame Optimizer [J]. Journal of System Simulation, 2023, 35(10): 2170-2181. |
[6] | Wen Rui. A Structured Conceptual Model of Joint Operations From Design Perspective [J]. Journal of System Simulation, 2023, 35(10): 2202-2211. |
[7] | Wang Yukun, Wang Ze, Dong Liwei, Li Ni. Research on Multi-aircraft Air Combat Behavior Modeling Based on Hierarchical Intelligent Modeling Methods [J]. Journal of System Simulation, 2023, 35(10): 2249-2261. |
[8] | Wang Haoyu, Gong Guanghong, Cai Jihong, Ye Bipeng, Zhou Zhaofang, Mei Zheng, Li Ni. Dynamic 3D Scene Perception Based on Battlefield Metaverse [J]. Journal of System Simulation, 2023, 35(10): 2262-2278. |
[9] | Liu Zihan, Hou Lingxiao, Li Yang, Wang Zhiguang, Zhang Wulong. An Automatic Code Generation Method for Generic Real-time Hardware-in-the-loop Simulation Based on Custom Wizard [J]. Journal of System Simulation, 2023, 35(10): 2279-2287. |
[10] | Shen Ziyi, Yang Meng, Yang Chao, Tang Weidi, Wu Xie, Liu Yu, Sheng Bin. Method for Extracting Data During Flight Phase of Ski Jumping Based on Monocular Video [J]. Journal of System Simulation, 2023, 35(9): 2035-2044. |
[11] | Yuan Biao, Huang Yourui, Xu Shanyong, Rong Xue. Construction and Application of Digital Twin System for Optical Fiber Secondary Coating Workshop [J]. Journal of System Simulation, 2023, 35(9): 2011-2022. |
[12] | Guo Runxia, Wang Yifu. Aircraft Assignment Method for Optimal Utilization of Maintenance Intervals [J]. Journal of System Simulation, 2023, 35(9): 1985-1999. |
[13] | Jiao Songming, Shou Yunfeng, Bai Jianpeng, Wang Zhu. Research on Hierarchical Motion Planning Method for UAV Substation Inspection [J]. Journal of System Simulation, 2023, 35(9): 1975-1984. |
[14] | Zhang Hongli, Deng Jingshuang. Research on Artificial Population Generation and Application Based on Genetic Algorithm [J]. Journal of System Simulation, 2023, 35(9): 1965-1974. |
[15] | He Yulin, Chen Jiaqi, Xu Hepeng, Huang Zhexue, Yin Jianfei. Data Generation Model-based Synthetic Sample Imputation Method [J]. Journal of System Simulation, 2023, 35(9): 1948-1964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||