Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (9): 2016-2031.doi: 10.16182/j.issn1004731x.joss.24-0101
Li Feixing1, Xing Lining2, Zhou Yu2
Received:
2024-01-25
Revised:
2024-05-19
Online:
2024-09-15
Published:
2024-09-30
Contact:
Zhou Yu
CLC Number:
Li Feixing, Xing Lining, Zhou Yu. Adversarial Simulation Testing Algorithm for SVM Based on Multi-objective Evolutionary Optimization[J]. Journal of System Simulation, 2024, 36(9): 2016-2031.
Table 1
F1 scores obtained by different methods attacking SVM with different kernels on different data sets
模式 | 核函数 | 原模型 | ALFA | ALFA-CR | ALFA-Tilt | ALFA-CC | NLFA | FLFA | RLFA | ALFA-MO |
---|---|---|---|---|---|---|---|---|---|---|
线性可分模式 | 线性核 | 0.987 8 | 0.950 1 | 0.928 8 | 0.891 6 | 0.928 0 | 0.975 0 | 0.915 1 | 0.955 5 | 0.822 3 |
径向基核 | 0.976 1 | 0.890 5 | 0.952 4 | 0.838 5 | 0.942 1 | 0.952 1 | 0.966 7 | 0.974 4 | 0.820 2 | |
多项式核 | 0.979 5 | 0.788 2 | 0.934 7 | 0.847 8 | 0.902 2 | 0.974 8 | 0.808 9 | 0.937 9 | 0.737 8 | |
抛物可分模式 | 线性核 | 0.760 1 | 0.656 7 | 0.762 1 | 0.656 3 | 0.761 4 | 0.760 6 | 0.755 7 | 0.760 8 | 0.640 3 |
径向基核 | 0.972 9 | 0.899 4 | 0.953 3 | 0.924 6 | 0.924 6 | 0.956 9 | 0.912 2 | 0.965 1 | 0.823 3 | |
多项式核 | 0.871 3 | 0.618 5 | 0.820 4 | 0.762 7 | 0.810 2 | 0.871 7 | 0.616 5 | 0.835 5 | 0.603 0 | |
环形可分模式 | 径向基核 | 0.956 7 | 0.932 3 | 0.952 4 | 0.911 9 | 0.887 1 | 0.943 9 | 0.939 9 | 0.948 0 | 0.785 4 |
多项式核 | 0.763 8 | 0.397 2 | 0.589 2 | 0.469 4 | 0.727 6 | 0.745 1 | 0.397 2 | 0.721 1 | 0.357 1 |
1 | Biggio Battista, Didaci Luca, Fumera Giorgio, et al. Poisoning Attacks to Compromise Face Templates[C]//2013 International Conference on Biometrics (ICB). Piscataway: IEEE, 2013: 1-7. |
2 | Rosenfeld E, Winston E, Ravikumar P, et al. Certified Robustness to Label-flipping Attacks via Randomized Smoothing[C]//Proceedings of the 37th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2020: 8230-8241. |
3 | Biggio Battista, Fumera Giorgio, Roli Fabio. Pattern Recognition Systems Under Attack: Design Issues and Research Challenges[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28(7): 1460002. |
4 | P K Chan Patrick, Luo Fengzhi, Chen Zitong, et al. Transfer Learning Based Countermeasure Against Label Flipping Poisoning Attack[J]. Information Sciences, 2021, 548: 450-460. |
5 | Zhuo Lü, Cao Hongbo, Zhang Feng, et al. AWFC: Preventing Label Flipping Attacks Towards Federated Learning for Intelligent IoT[J]. The Computer Journal, 2022, 65(11): 2849-2859. |
6 | Najeeb Moharram Jebreel, Domingo-Ferrer Josep, Sánchez David, et al. LFighter: Defending Against the Label-flipping Attack in Federated Learning[J]. Neural Networks, 2024, 170: 111-126. |
7 | Fahri Anıl Yerlikaya, Bahtiyar Serif. Data Poisoning Attacks Against Machine Learning Algorithms[J]. Expert Systems with Applications, 2022, 208: 118101. |
8 | Biggio Battista, Corona Igino, Nelson Blaine, et al. Security Evaluation of Support Vector Machines in Adversarial Environments[M]//Ma Yunqian, Guo Guodong. Support Vector Machines Applications. Cham: Springer International Publishing, 2014: 105-153. |
9 | Xu Qianqian, Yang Zhiyong, Zhao Yunrui, et al. Rethinking Label Flipping Attack: From Sample Masking to Sample Thresholding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 7668-7685. |
10 | Konda Reddy Mopuri, Shaj Vaisakh, Venkatesh Babu R. Adversarial Fooling Beyond "Flipping the Label"[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2020: 3374-3382. |
11 | Zhang Hongpo, Cheng Ning, Zhang Yang, et al. Label Flipping Attacks Against Naive Bayes on Spam Filtering Systems[J]. Applied Intelligence, 2021, 51(7): 4503-4514. |
12 | Xiao Han, Stibor Thomas, Eckert Claudia. Evasion Attack of Multi-class Linear Classifiers[C]//Proceedings of the 16th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer Berlin Heidelberg, 2012: 207-218. |
13 | Barreno M, Nelson B, Joseph A D, et al. The Security of Machine Learning[J]. Machine Learning, 2010, 81(2): 121-148. |
14 | Zhou Yan, Kantarcioglu M, Thuraisingham B, et al. Adversarial Support Vector Machine Learning[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2012: 1059-1067. |
15 | Biggio Battista, Nelson Blaine, Laskov Pavel. Poisoning Attacks Against Support Vector Machines[C]//Proceedings of the 29th International Coference on Machine Learning. Madison: Omnipress, 2012: 1467-1474. |
16 | Biggio Battista, Nelson Blaine, Laskov Pavel. Support Vector Machines Under Adversarial Label Noise[C]//Proceedings of the Asian Conference on Machine Learning. Chia Laguna Resort: PMLR, 2011: 97-112. |
17 | Xiao Han, Xiao Huang, Eckert Claudia. Adversarial Label Flips Attack on Support Vector Machines[C]//Proceedings of the 20th European Conference on Artificial Intelligence. NLD: IOS Press, 2012: 870-875. |
18 | Xiao Huang, Biggio Battista, Nelson Blaine, et al. Support Vector Machines Under Adversarial Label Contamination[J]. Neurocomputing, 2015, 160: 53-62. |
19 | Mei Shike, Zhu Xiaojin. Using Machine Teaching to Identify Optimal Training-set Attacks on Machine Learners[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2871-2877. |
20 | Burkard C, Lagesse B. Analysis of Causative Attacks Against SVMs Learning from Data Streams[C]//Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics. New York: Association for Computing Machinery, 2017: 31-36. |
21 | 钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658-1665. |
Qian Yaguan, Lu Hongbo, Ji Shouling, et al. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. | |
22 | Chakraborty Anirban, Alam Manaar, Dey V, et al. A Survey on Adversarial Attacks and Defences[J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 25-45. |
23 | Koh P W, Steinhardt J, Liang P. Stronger Data Poisoning Attacks Break Data Sanitization Defenses[J]. Machine Learning, 2022, 111(1): 1-47. |
24 | Jha R D, Hayase J, Oh S. Label Poisoning Is All You Need[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 71029-71052. |
25 | Lingam Vijay, Mohammad Sadegh Akhondzadeh, Bojchevski Aleksandar. Rethinking Label Poisoning for Gnns: Pitfalls and Attacks[C]//ICLR 2024. New York: ICLR, 2024: 1-29. |
26 | Yao Feng, Du Yonghao, Li Lei, et al. General Modeling and Optimization Technique for Real-world Earth Observation Satellite Scheduling[J]. Frontiers of Engineering Management, 2023, 10(4): 695-709. |
27 | Wang Yuting, Han Yuyan, Gong Dunwei, et al. A Review of Intelligent Optimization for Group Scheduling Problems in Cellular Manufacturing[J]. Frontiers of Engineering Management, 2023, 10(3): 406-426. |
28 | He Yongming, Xing Lining, Chen Yingwu, et al. A Generic Markov Decision Process Model and Reinforcement Learning Method for Scheduling Agile Earth Observation Satellites[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1463-1474. |
29 | Xing Lining, Rohlfshagen P, Chen Yingwu, et al. An Evolutionary Approach to the Multidepot Capacitated Arc Routing Problem[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 356-374. |
30 | Xing Lining, Rohlfshagen P, Chen Yingwu, et al. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2011, 41(4): 1110-1123. |
31 | Wang Xuewu, Hua Yi, Gao Jin, et al. Digital Twin Implementation of Autonomous Planning Arc Welding Robot System[J]. Complex System Modeling and Simulation, 2023, 3(3): 236-251. |
32 | Zhang Qingfu, Li Hui. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. |
33 | Ni Wayan Surya Wardhani, Masithoh Yessi Rochayani, Iriany Atiek, et al. Cross-validation Metrics for Evaluating Classification Performance on Imbalanced Data[C]//2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA). Piscataway: IEEE, 2019: 14-18. |
[1] | Zhang Wenqiang, Wang Xiaomeng, Zhang Xiaoxiao, Zhang Guohui. Hybrid Evolutionary Multi-objective Optimization Algorithm for Vehicle Routing Problem with Simultaneous Delivery and Pickup [J]. Journal of System Simulation, 2024, 36(8): 1914-1928. |
[2] | Jiang Quan, Wei Jingxuan. Real-time Scheduling Method for Dynamic Flexible Job Shop Scheduling [J]. Journal of System Simulation, 2024, 36(7): 1609-1620. |
[3] | Deng Mingjun, Hu Xinxia, Li Xiang, Xu Liping. Arterial Coordination Optimization Method Based on Vehicle Speed Guidance and Inductive Control [J]. Journal of System Simulation, 2024, 36(6): 1309-1321. |
[4] | Wen Tingxin, Guan Tingyu. Hybrid Flow Shop Scheduling with Limited Buffers Considering Energy Consumption and Transportation [J]. Journal of System Simulation, 2024, 36(6): 1344-1358. |
[5] | Zhao Jia, Lai Zhizhen, Wu Runxiu, Cui Zhihua, Wang Hui. Hierarchical Guided Enhanced Multi-objective Firefly Algorithm [J]. Journal of System Simulation, 2024, 36(5): 1152-1164. |
[6] | Wang Yubo, Hu Chengyu, Gong Wenyin. Handling Constrained Multi-objective Optimization Problems Based on Relationship Between Pareto Fronts [J]. Journal of System Simulation, 2024, 36(4): 901-914. |
[7] | Zeng Shaoda, Liu Hailin. Planning Modeling and Optimization Algorithm for 5G Indoor Distribution System [J]. Journal of System Simulation, 2024, 36(3): 659-672. |
[8] | An Jing, Si Guangya, Zeng Miaoting. Construction of Surrogate Model Driven by Model and Data [J]. Journal of System Simulation, 2024, 36(3): 756-769. |
[9] | Wang Hui, Peng Le. Improved Multi-objective Swarm Algorithm to Optimize Wash-out Motion and its Simulation Experiment [J]. Journal of System Simulation, 2024, 36(2): 436-448. |
[10] | Li Zhang, Mingling He, Qiushuang Yin, Ning Li, Le'an Yu. Research on Period Emergency Supply Distribution Optimization Under Uncertainty [J]. Journal of System Simulation, 2023, 35(8): 1669-1680. |
[11] | Xu Wang, Weidong Ji, Guohui Zhou, Jiahui Yang. Multi-objective Optimization Algorithm Based on Multi-index Elite Individual Game Mechanism [J]. Journal of System Simulation, 2023, 35(3): 494-514. |
[12] | Chaoyang Zhang, Liping Xu, Jian Li, Yihao Zhao, Kui He. Flexible Job-Shop Scheduling Problem Based on Improved Wolf Pack Algorithm [J]. Journal of System Simulation, 2023, 35(3): 534-543. |
[13] | Weidong Ji, Yuqi Yue, Xu Wang, Ping Lin. Large-scale Multi-objective Natural Computation Based on Dimensionality Reduction and Clustering [J]. Journal of System Simulation, 2023, 35(1): 41-56. |
[14] | Yan Xiuying, Dang Miaomiao. Optimization of Household Electricity Consumption Period Based on Improved Multi-objective Particle Swarm Optimization [J]. Journal of System Simulation, 2022, 34(1): 70-78. |
[15] | Hongliang Zhang, Renman Ding, Gongjie Xu. Energy-Efficient Scheduling of Multi-objective Flexible Job Shop Considering Interval Processing Time [J]. Journal of System Simulation, 2022, 34(09): 1976-1987. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||