Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (1): 95-109.doi: 10.16182/j.issn1004731x.joss.21-0689
• Papers • Previous Articles Next Articles
					
													Jing Zheng1,2(
), Weili Xiong1,2(
), Xiaodong Wu1,2
												  
						
						
						
					
				
Received:2021-07-15
															
							
																	Revised:2021-10-02
															
							
															
							
																	Online:2023-01-30
															
							
																	Published:2023-01-18
															
						Contact:
								Weili Xiong   
																	E-mail:zhengjing7928@163.com;greenpre@163.com
																					CLC Number:
Jing Zheng, Weili Xiong, Xiaodong Wu. kNN Fault Detection Based on Reconstruction Error and Multi-block Modeling Strategy[J]. Journal of System Simulation, 2023, 35(1): 95-109.
Table 2
Comparison of TE process monitoring results when using original data and reconstruction error as observation information
| 故障编码 | 以原始数据为观测信息 | 以重构误差为观测信息 | ||||||
|---|---|---|---|---|---|---|---|---|
| 子块1 | 子块2 | 子块3 | BIC | 子块1 | 子块2 | 子块3 | BIC | |
| 1 | 0.996 | 0.998 | 0.001 | 0.995 | 0.996 | 0.995 | 0.976 | 0.995 | 
| 2 | 0.983 | 0.988 | 0.000 | 0.984 | 0.986 | 0.989 | 0.978 | 0.984 | 
| 3 | 0.013 | 0.326 | 0.001 | 0.054 | 0.092 | 0.195 | 0.119 | 0.150 | 
| 4 | 0.975 | 0.999 | 0.005 | 0.999 | 0.999 | 0.999 | 0.117 | 0.999 | 
| 5 | 0.260 | 0.809 | 0.002 | 0.381 | 0.999 | 0.999 | 0.336 | 0.999 | 
| 6 | 1 | 0.999 | 0.004 | 0.999 | 0.999 | 0.999 | 0.911 | 0.999 | 
| 7 | 1 | 0.999 | 0.007 | 0.999 | 0.999 | 0.999 | 0.554 | 0.999 | 
| 8 | 0.976 | 0.993 | 0.006 | 0.979 | 0.979 | 0.984 | 0.969 | 0.976 | 
| 9 | 0.020 | 0.290 | 0.005 | 0.051 | 0.084 | 0.162 | 0.135 | 0.132 | 
| 10 | 0.418 | 0.815 | 0.000 | 0.618 | 0.737 | 0.860 | 0.393 | 0.848 | 
| 11 | 0.683 | 0.941 | 0.047 | 0.868 | 0.758 | 0.930 | 0.553 | 0.913 | 
| 12 | 0.989 | 1.000 | 0.199 | 0.993 | 0.995 | 1.000 | 0.980 | 1.000 | 
| 13 | 0.946 | 0.963 | 0.031 | 0.951 | 0.950 | 0.958 | 0.944 | 0.953 | 
| 14 | 1 | 0.878 | 0.998 | 0.998 | 0.999 | 0.998 | 0.999 | 0.999 | 
| 15 | 0.029 | 0.326 | 0.004 | 0.105 | 0.101 | 0.220 | 0.119 | 0.181 | 
| 16 | 0.289 | 0.820 | 0.002 | 0.549 | 0.729 | 0.886 | 0.291 | 0.893 | 
| 17 | 0.919 | 0.974 | 0.149 | 0.966 | 0.946 | 0.975 | 0.864 | 0.976 | 
| 18 | 0.896 | 0.940 | 0.041 | 0.899 | 0.906 | 0.914 | 0.898 | 0.913 | 
| 19 | 0.099 | 0.412 | 0.114 | 0.135 | 0.669 | 0.644 | 0.697 | 0.779 | 
| 20 | 0.495 | 0.848 | 0.039 | 0.642 | 0.669 | 0.843 | 0.452 | 0.810 | 
| 21 | 0.425 | 0.699 | 0.001 | 0.566 | 0.576 | 0.664 | 0.583 | 0.639 | 
| 平均报警率 | 0.639 | 0.810 | 0.079 | 0.701 | 0.770 | 0.820 | 0.613 | 0.816 | 
| 平均误报率 | 0.006 | 0.159 | 0.003 | 0.015 | 0.046 | 0.079 | 0.067 | 0.059 | 
Table 3
TE process monitoring results of PCA, SVDD, kNN, MBIkNN, RE_kNN and RE_MBIkNN
| 故障编码 | 报警率 | |||||
|---|---|---|---|---|---|---|
| PCA | SVDD | kNN | MBIkNN | RE_kNN | RE_MBIkNN | |
| 1 | 0.999 | 0.993 | 0.995 | 0.995 | 0.996 | 0.995 | 
| 2 | 0.985 | 0.983 | 0.983 | 0.984 | 0.986 | 0.984 | 
| 3 | 0.032 | 0.035 | 0.013 | 0.054 | 0.092 | 0.150 | 
| 4 | 1 | 0.790 | 0.974 | 0.999 | 0.999 | 0.999 | 
| 5 | 0.253 | 0.275 | 0.260 | 0.381 | 0.999 | 0.999 | 
| 6 | 1 | 1 | 1 | 0.999 | 0.999 | 0.999 | 
| 7 | 1 | 1 | 1 | 0.999 | 0.999 | 0.999 | 
| 8 | 0.976 | 0.975 | 0.977 | 0.979 | 0.979 | 0.976 | 
| 9 | 0.058 | 0.029 | 0.021 | 0.051 | 0.084 | 0.132 | 
| 10 | 0.299 | 0.446 | 0.418 | 0.618 | 0.737 | 0.848 | 
| 11 | 0.754 | 0.598 | 0.683 | 0.868 | 0.758 | 0.913 | 
| 12 | 0.984 | 0.987 | 0.988 | 0.993 | 0.995 | 1 | 
| 13 | 0.953 | 0.944 | 0.946 | 0.951 | 0.950 | 0.953 | 
| 14 | 1 | 1 | 1 | 0.998 | 0.999 | 0.999 | 
| 15 | 0.037 | 0.063 | 0.029 | 0.105 | 0.101 | 0.181 | 
| 16 | 0.274 | 0.284 | 0.279 | 0.549 | 0.729 | 0.893 | 
| 17 | 0.952 | 0.876 | 0.919 | 0.966 | 0.946 | 0.976 | 
| 18 | 0.901 | 0.898 | 0.898 | 0.899 | 0.906 | 0.913 | 
| 19 | 0.225 | 0.045 | 0.089 | 0.135 | 0.669 | 0.779 | 
| 20 | 0.498 | 0.458 | 0.485 | 0.642 | 0.669 | 0.810 | 
| 21 | 0.513 | 0.421 | 0.426 | 0.566 | 0.576 | 0.639 | 
| 平均报警率 | 0.652 | 0.624 | 0.637 | 0.701 | 0.770 | 0.816 | 
| 平均误报率 | 0.004 | 1.756 | 0.006 | 0.015 | 0.046 | 0.059 | 
| 1 | 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956. | 
| Liu Qiang, Zhuo Jie, Lang Ziqiang, et al. Perspectives on Data-driven Operation Monitoring and Self-optimization of Industrial Processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956. | |
| 2 | Ge Z, Song Z. Review of Recent Research on Data-based Process Monitoring[J]. Industrial & Engineering Chemistry Research (S0888-5885), 2013, 52(10): 3534-3562. | 
| 3 | 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349-365. | 
| Peng Kaixiang, Ma Liang, Zhang Kai. Review of Quality-related Fault Detection and Diagnosis Techniques for Complex Industrial Processes[J]. Acta Automatica Sinica, 2017, 43(3): 349-365. | |
| 4 | Jiang Q, Yan X, Zhao W. Fault Detection and Diagnosis in Chemical Processes Using Sensitive Principal Component Analysis[J]. Industrial & Engineering Chemistry Research(S0888-5885), 2013, 52(4): 1635-1644. | 
| 5 | Yin S, Xie X, Sun W. A Nonlinear Process Monitoring Approach with Locally Weighted Learning of Available Data[J]. IEEE Transactions on Industrial Electronics(S0278-0046), 2016, 64(2): 1507-1516. | 
| 6 | 王文标, 田志远, 汪思源, 等. 交叉分段PCA在锅炉故障诊断中的应用[J]. 信息与控制, 2020, 49(4): 507-512. | 
| Wang Wenbiao, Tian Zhiyuan, Wang Siyuan, et al. Optimal Operation Method Based on Cross and Piecewise PCA for Industrial Boilers[J]. Information and Control, 2020, 49(4): 507-512. | |
| 7 | Wang Y, Si Y, Huang B, et al. Survey on the Theoretical Research and Engineering Applications of Multivariate Statistics Process Monitoring Algorithms: 2008-2017[J]. The Canadian Journal of Chemical Engineering(S0008-4034), 2018, 96(10): 2073-2085. | 
| 8 | Zhou Z, Wen C, Yang C. Fault Detection using Random Projections and k-nearest Neighbor Nule for Semiconductor Manufacturing Processes[J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2014, 28(1): 70-79. | 
| 9 | MacGregor J F, Jaeckle C, Kiparissides C, et al. Process Monitoring and Diagnosis by Multiblock PLS Methods[J]. AIChE Journal (S0001-1541), 1994, 40(5): 826-838. | 
| 10 | Ge Z, Song Z. Distributed PCA Model for Plant-wide Process Monitoring[J]. Industrial & Engineering Chemistry Research (S0888-5885), 2013, 52(5): 1947-1957. | 
| 11 | Ge Z, Zhang M, Song Z. Nonlinear Process Monitoring Based on Linear Subspace and Bayesian Inference[J]. Journal of Process Control (S0959-1524), 2010, 20(5): 676-688. | 
| 12 | Jiang Q, Wang B, Yan X. Multiblock Independent Component Analysis Integrated with Hellinger Distance and Bayesian Inference for Non-Gaussian Plant-wide Process Monitoring[J]. Industrial & Engineering Chemistry Research (S0888-5885), 2015, 54(9): 2497-2508. | 
| 13 | 王振雷, 江伟, 王昕. 基于多块MICA-PCA的全流程过程监控方法[J]. 控制与决策, 2018, 33(2): 269-274. | 
| Wang Zhenlei, Jiang Wei, Wang Xin. Plant-wide Process Monitoring Based on Multiblock MICA-PCA[J]. Control and Decision, 2018, 33(2): 269-274. | |
| 14 | 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 316-329. | 
| Gu Bingbin, Xiong Weili. Fault Diagnosis Based on PCA Method with Multi-block Information Extraction[J]. CIESC Journal, 2019, 70(2): 316-329. | |
| 15 | He P Q, Wang J. Fault Detection Using the k-nearest Neighbor Rule for Semiconductor Manufacturing Processes[J].IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2007, 20(4): 345-354. | 
| 16 | 张成, 郭青秀, 冯立伟, 等. 基于局部保持投影-加权k近邻规则的多模态间歇过程故障检测策略[J]. 控制理论与应用, 2019, 36(10): 1682-1689. | 
| Zhang Chen, Guo Qingxiu, Feng Liwei, et al. Fault Detection Strategy Based on Locality Preserving Projections-weighted k Nearest Neighbors in Multimodal Batch Processes[J]. Control Theory & Applications, 2019, 36(10): 1682-1689. | |
| 17 | 郭金玉, 刘玉超, 李元. 基于局部相对概率密度kNN的多模态过程故障检测[J]. 高校化学工程学报, 2019, 33(1): 159-166. | 
| Guo Jinyu, Liu Yuchao, Li Yuan. Multimodal Process Fault Detection Based on Local Relative Probability Density kNN[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(1): 159-166. | |
| 18 | 刘腾飞. 基于深层自编码器的发酵过程故障监测[D]. 北京: 北京工业大学, 2020: 54-64. | 
| Liu Tengfei. Fault Monitoring of Fermentation Process Based on Deep Auto-encoder[D]. Beijing: Beijing University of Technology, 2020: 54-64. | |
| 19 | 张成, 高宪文, 徐涛, 等. 基于独立元的k近邻故障检测策略[J]. 控制理论与应用, 2018, 35(6): 805-812. | 
| Zhang Chen, Gao Xianwen, Xu Tao, et al. Fault Detection Strategy of Independent Component-Based k Nearest Neighbor Rule[J]. Control Theory & Applications, 2018, 35(6): 805-812. | |
| 20 | 马贺贺, 胡益, 侍洪波. 基于距离空间统计量分析的多模态过程无监督故障检测[J]. 化工学报, 2012, 63(3): 873-880. | 
| Ma Hehe, Hu Yi, Shi Hongbo. Unsupervised Fault Detection for Multimode Processes using Distance Space Statistics Analysis[J]. CIESC Journal, 2012, 63(3): 873-880. | |
| 21 | Zhu W, Sun W, Romagnoli J. Adaptive k-Nearest-Neighbor Method for Process Monitoring[J]. Industrial & Engineering Chemistry Research (S0888-5885), 2018, 57(7): 2574-2586. | 
| 22 | Zhou Z, Wen C, Yang C. Fault Isolation Based on k-Nearest Neighbor Rule for Industrial Processes[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2016, 63(4): 2578-2586. | 
| 23 | Shen B, Ge Z. Supervised Nonlinear Dynamic System for Soft Sensor Application Aided by Variational Auto-encoder[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2020, 69(9): 6132-6142. | 
| 24 | Chen Z, Li W. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network[J]. IEEE Transactions on Instrumentation and Measurement (S0018-9456), 2017, 66(7): 1693-1702. | 
| 25 | Ge Z, Song Z. Multimode Process Monitoring Based on Bayesian Method[J]. Journal of Chemometrics(S0886-9383), 2009, 23(12): 636-650. | 
| 26 | Yin S, Ding S X, Haghani A, et al. A Comparison Study of Basic Data-driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process[J]. Journal of Process Control (S0959-1524), 2012, 22(9): 1567-1581. | 
| 27 | 郭金玉, 王鑫, 李元. 基于集成核局部保持投影算法的故障检测[J]. 信息与控制, 2018, 47(2): 191-199. | 
| Guo Jinyu, Wang Xin, Li Yuan. Fault Detection Based on Ensemble Kernel Locality Preserving Projections[J]. Information and Control, 2018, 47(2): 191-199. | |
| 28 | Li N, Yang Y. Ensemble Kernel Principal Component Analysis for Improved Nonlinear Process Monitoring[J]. Industrial & Engineering Chemistry Research (S0888-5885), 2015, 54(1): 318-329. | 
| [1] | Xiangping Wu, Lijun Ping, Dongshi Xu. A Visual Analytics of Urban Traffic Events Using Social Media Data [J]. Journal of System Simulation, 2022, 34(5): 1140-1151. | 
| [2] | Ningke Sun, Yan Wang, Zhicheng Ji. Anomaly Detection Method of Electrical Power Consumption Based on Deep Autoencoder [J]. Journal of System Simulation, 2022, 34(12): 2557-2565. | 
| [3] | Zhang Lixia, Feng Fuzhou, Liu Xiangbo, Wang Min. Research on Fault Detection and isolation method for Typical Hydraulic System [J]. Journal of System Simulation, 2018, 30(5): 1818-1825. | 
| [4] | Niu Yuguang, Wang Shilin, Lin Zhongwei, Li Xiaoming. Fault Detection Based on GPNMF for Industrial Process [J]. Journal of System Simulation, 2018, 30(2): 521-532. | 
| [5] | Li Hailin, Zhang Bin, Wu Dewei, Lu Hu. A Way of Integrated Navigation Fault Detection of Near Space Hypersonic Cruising Aircraft [J]. Journal of System Simulation, 2017, 29(8): 1809-1814. | 
| [6] | Li Gang, Xu Pengcheng, Han Longmei. Fault Spatial-temporal Detecting and Diagnosis for Power Grid Based on Wavelet Analysis [J]. Journal of System Simulation, 2015, 27(12): 3018-3024. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||