Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (4): 920-927.doi: 10.16182/j.issn1004731x.joss.20-0953
• National Security Simulation • Previous Articles
Received:2020-12-01
Revised:2021-01-30
Online:2022-04-30
Published:2022-04-19
CLC Number:
Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network[J]. Journal of System Simulation, 2022, 34(4): 920-927.
| 1 | 赵健, 张智, 李帅. 雷达电磁环境仿真研究[J]. 舰船电子对抗, 2009, 32(5): 71-74. |
| Zhao Jian, Zhang Zhi, Li Shuai. Study of Electromagnetic Environment Simulation for Radar[J]. Shipboard Electronic Countermeasure, 2009, 32(5): 71-74. | |
| 2 | 张文辉, 张永宁, 田雨书, 等. 基于SystemVue的复杂电磁环境中雷达半实物仿真[J]. 火控雷达技术, 2018, 47(2): 85-90. |
| Zhang Wenhui, Zhang Yongning, Tian Yushu, et al. System Vue Based Hardware-in-loop Simulation of Radar in Complicated Electromagnetic Environment[J]. Fire Control Radar Technology, 2018, 47(2): 85-90. | |
| 3 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]// Advances in Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680. |
| 4 | Radford A, Metz L, Chintala S, et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C]// International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016: 1-16. |
| 5 | Adler J, Lunz S. Banach Wasserstein Gan[C]// Advances in Neural Information Processing Systems. Montréal: MIT Press, 2018: 6754-6763. |
| 6 | Zhu J Y, Park T, Isola P, et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks [C]// IEEE International Conference on Computer Vision. Venice: IEEE Computer Society, 2017: 2223-2232. |
| 7 | Hussein S A, Tirer T, Giryes R. Image-Adaptive GAN Based Reconstruction[C]// AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 3121-3129. |
| 8 | Kumar K, Kumar R, de Boissiere T, et al. Melgan: Generative Adversarial Networks for Conditional Waveform Synthesis[C]// Advances in Neural Information Processing Systems. Vancouver: MIT Press, 2019: 14910-14921. |
| 9 | Yang S, Xie L, Chen X, et al. Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under a Multi-task Learning Framework[C]// 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). Okinawa: IEEE, 2017: 685-691. |
| 10 | Zhang Y, Gan Z, Fan K, et al. Adversarial Feature Matching for Text Generation[C]// 34th International Conference on Machine Learning Learning. Sydney: ACM, 2017: 4006-4015. |
| 11 | Yu L, Zhang W, Wang J, et al. Seqgan: Sequence Generative Adversarial Nets with Policy Gradient[C]// Thirty-first AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017. |
| 12 | Zheng Z, Zheng L, Yang Y, et al. Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in Vitro[C]// International Conference on Computer Vision. Venice: IEEE, 2017: 3774-3782. |
| 13 | Hou J, Zeng H, Cai L, et al. Multi-Label Learning with Multi-Label Smoothing Regularization for Vehicle Re-Identification[J]. Neurocomputing (S0925-2312), 2019, 345: 15-22. |
| 14 | Zheng Z, Zheng L, Yang Y. Unlabeled Samples Generated by Gan Improve the Person Re-identification Baseline in Vitro[C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3754-3762. |
| 15 | Sun Y, Liu Z, Todorovic S, et al. Adaptive Boosting for SAR Automatic Target Recognition[J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2007, 43(1): 112-125. |
| 16 | Zhao Q, Principe J C. Support Vector Machines for SAR Automatic Target Recognition[J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2001, 37(2): 643-654. |
| 17 | Lecun Y, Bottou L. Gradient-Based Learning Applied to Document Recognition[J]. IEEE (S0018-9219), 1998, 86(11): 2278-2324. |
| 18 | Chen S, Wang H, Xu F, et al. Target Classification Using the Deep Convolutional Networks for SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892), 2016, 54(8): 4806-4817. |
| 19 | Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein Gans[C]// Advances in Neural Information Processing Systems. Long Beach: MIT Press, 5767-5777. |
| 20 | Mao X, Li Q, Xie H, et al. Least Squares Generative Adversarial Networks[C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2794-2802. |
| [1] | Weiguo Tong, Shichao Zeng, Lifeng Zhang, Zhe Hou, Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network [J]. Journal of System Simulation, 2022, 34(9): 2028-2036. |
| [2] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
| [3] | Hu Lei, Wang Zugen, Chen Tian, Zhang Yongmei. An Improved SRGAN Infrared Image Super-Resolution Reconstruction Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2109-2118. |
| [4] | Lin Shuo, An Lei, Gao Zhijun, Shan Dan, Shang Wenli. Research on Intrusion Detection Based on Stacked Autoencoder and Long-short Memory [J]. Journal of System Simulation, 2021, 33(6): 1288-1296. |
| [5] | Cheng Wencong, Shi Xiaokang, Wang Zhigang. Creating Synthetic Satellite Cloud Data Based on GAN Method [J]. Journal of System Simulation, 2021, 33(6): 1297-1306. |
| [6] | Li Xinli, Zou Changming, Yang Guotian, Liu He. Research of Super-resolution Processing of Invoice Image Based on Generative Adversarial Network [J]. Journal of System Simulation, 2021, 33(6): 1307-1314. |
| [7] | Dong Shuqin, Zhang Bin. Network Traffic Anomaly Detection Method for Imbalanced Data [J]. Journal of System Simulation, 2021, 33(3): 679-689. |
| [8] | Wang Xiaohan, Zhang Lin, Ren Lei, Xie Kunyu, Wang Kunyu, Ye Fei, Chen Zhen. Brief Review on Applying Reinforcement Learning to Job Shop Scheduling Problems [J]. Journal of System Simulation, 2021, 33(12): 2782-2791. |
| [9] | Wang Buwei, Wang Min, Fan Qian, Wang Ya'nan, zhang hanwen, Yue Yunliang. Study on Prediction of Crystal Properties Based on Deep Learning [J]. Journal of System Simulation, 2021, 33(12): 2854-2863. |
| [10] | Feng Xiao, Zhang Hui, Zhou Rui, Qiao Lu, Wei Dong, Li Dandan, Zhang Yuyao, Zheng Guoqing. Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel [J]. Journal of System Simulation, 2021, 33(12): 2983-2991. |
| [11] | Du Jinlian, Li Shufei, Jin Xueyun. Research on the Network of 3D Smoke Flow Super-Resolution Data Generation [J]. Journal of System Simulation, 2021, 33(10): 2381-2389. |
| [12] | Liu Ruijun, Wang Xiangshang, Zhang Chen, Zhang Bohua. A Survey on Visual SLAM based on Deep Learning [J]. Journal of System Simulation, 2020, 32(7): 1244-1256. |
| [13] | Yin Jingfang, Zhu Dengming, Shi Min, Wang Zhaoqi. Human Depth Maps Restoration Based on Guided GAN [J]. Journal of System Simulation, 2020, 32(7): 1312-1321. |
| [14] | Ji Xiaofeng, Ge Yicheng. Holiday Highway Traffic Flow Prediction Method Based on Deep Learning [J]. Journal of System Simulation, 2020, 32(6): 1164-1171. |
| [15] | Kong Rui, Xie Wei, Lei Tai. Research on Image Description Method Based on Neural Network [J]. Journal of System Simulation, 2020, 32(4): 601-611. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
