[1] 戚大伟, 牟洪波. 基于Hu不变矩和BP神经网络的木材缺陷检测[J]. 东南大学学报(自然科学版), 2013, 43(增1): 63-66. Qi Dawei, Mu Hongbo.Detection of Wood Defects Types Based on Hu invariant Moments and BP neural network[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1): 63-66. [2] 杨慧敏, 王立海. 木材缺陷与超声检测参数相关性及影响因素[J]. 东北林业大学学报, 2015, 43(8): 114-116. Yang Huimin, Wang Lihai.Correlation and Influencing Factors between Wood Defect and Ultrasonic Propagation Parameters[J]. Journal of Northeast Forestry University, 2015, 43(8): 114-116. [3] 邵家鑫, 都东, 石涵, 等. 基于厚壁工件X射线实时成像的焊缝缺陷自动检测[J]. 清华大学学报(自然科学版), 2013, 53(2): 150-154. Shao Jiaxin, Du Dong, Shi Han, et al.Aotumatic Weld Defect Detection Based on X-ray Images of Thick-wall Workpieces[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(2): 150-154. [4] 苏文浩, 刘贵珊, 何建国, 等. 高光谱图像技术结合图像处理方法检测马铃薯外部缺陷[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 188-196. Su wenhao, Liu Guishan, He Jianguo, et al. Detestion of External Defects on Potatoes by Hyperspectral Imaging Technology and Processing[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 188-196. [5] 戴天虹, 邱筱斐. 基于形态学的木材缺陷检测[J]. 机电产品开发与创新, 2011, 24(5): 79-81. Dai Tianhong, Qiu Xiaofei.Wood Defect Based on Mathematical Morpholog[J]. Development & Innovation of Machiner & Electrical Products, 2011, 24(5): 79-81. [6] 吴思远, 张召, 邹洋. 基于2D Gabor小波和HSV空间的木材缺陷检测[J]. 郑州大学学报(理学版), 2010, 42(1): 93-97. Wu Siyuan, Zhang Zhao, Zou Yang.Timber Defects Detection Dased on 2D Gabor Davelet and HSV Color Space[J]. Journal of Zhengzhou University(Natural Science Edition), 2010, 42(1): 93-97. [7] Freund Y, Schapire R E.A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences (S0022-0000), 1999, 55(1):119-139. [8] 左登宇. 基于Adaboost算法的人脸检测研究[D]. 合肥: 中国科学技术大学, 2009. Zuo Dengyu.A Study of Face Detection Based on Adaboost Algorithm[D]. Hefei: University of Science and Technology of China, 2009. [9] 王海, 蔡英凤, 袁朝春. 基于多模式弱分类器的AdaBoost-Bagging车辆检测算法[J]. 交通运输工程学报, 2015, 15(2): 118-126. Wang Hai, Cai Yingfeng, Yuan Chaochun.AdaBoost-Bagging vehicle detection algorithm based on multi-mode weak classifier[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 118-126. [10] Krizhevsky A, Sutskever I, Hinton G E.ImageNet Classification with Deep Convolutional Neural Networks[C]. International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc, 2012(1): 1097-1105. [11] 陈耀丹, 王连明. 基于卷积神经网络的人脸识别方法[J]. 东北师大学报(自然科学版), 2016, 48(2): 70-76. Chen Yaodan, Wang Lianming.Convolutional Neural Network for Face Recognition[J]. Journal of Northeast Normal University (Natural Science Edition), 2016, 48(2): 70-76. [12] 刘琮, 许维胜, 吴启迪. 时空域深度卷积神经网络及其在行为识别上的应用[J]. 计算机科学, 2015, 42(7): 245-249. Liu Cong, Xu Weisheng Wu Qidi. Spatiotemporal Convolutional Neural Networks and Its Application in Action Recognition[J]. Computer Science, 2015, 42(7): 245-249. [13] 陈永光. 遗传算法及模糊控制理论在木板材优化下料系统中的应用[D]. 北京: 北京林业大学, 2003. Chen Yongguang.The Application of Genetic Algorithm and Fuzzy Control Theory in Control System of Wood Optimization Cut[D]. Beijing: Beijing Forestry University, 2003. [14] 龙伶敏. 基于Adaboost的人脸检测方法及眼睛定位算法研究[D]. 成都: 电子科技大学, 2008. Long Lingmin.Research on Adaboost Based Face Detection Method and Eye Location Algorithm[D]. Chengdu: University of Electronic Science and technology of China, 2008. [15] Ojala T, Harwood I.A Comparative Study of Texture Measures with Classification Based on Feature Distributions[J]. Pattern Recognition (S0031-3203), 1996, 29(1): 51-59. [16] Ojala T, Pietikainen M, Maenpaa T.Multiresolution Gray-Scale and Rotation Invariant Texture Classfication with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2002, 24(7): 971-987. [17] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 30-31. Zhou Zhihua.Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 30-31. [18] Viola P, Jones M. Rapid Object Detection using a Boosted Cascade of Simple Features[C]. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Kauai, HI, USA: IEEE, 2001(1): 511-518 [19] 宋晓琳, 邬紫阳, 张伟伟. 基于阴影和类Haar特征的动态车辆检测[J]. 电子测量与仪器学报, 2015, 29(9): 1340-1347. Song Xiaolin, Wu Ziyang, Zhang Weiwei.Dynamic vehicle detection based on shadow and Haar-like feature[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(9): 1340-1347. [20] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. San Diego IEEE, 2005(1): 886-893. [21] 孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921-1926. Sun Rui, Chen Jun, Gao Jun.Fast Pedestrain Detection Based on Saliency Detection and HOG-NMF Features[J]. Journal of Electronics & Information Technology, 2013, 35(8): 1921-1926. [22] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]. International Conference on Machine Learning,2015. ICML 2015. Lille, France, 2015(37):448-456. [23] 高学, 王有旺. 基于CNN和随机弹性形变的相似手写汉字识别[J]. 华南理工大学学报, 2014, 42(1): 72-76,83. Gao Xue, Wang Youwang.Recognition of Similar Handwritten Chinese Characters Based on CNN and Random Elastic Deformation[J]. Journal of South China University of Technology, 2014, 42(1): 72-76,83. [24] 吴东洋, 业宁, 苏小青. 基于灰度共生矩阵和聚类方法的木材缺陷识别[J]. 计算机与数字工程, 2010, 38(11): 38-41. Wu Dongyang, Ye Ning, Su Xiaoqing.Wood Defect Recognition Based on GLCM and Clustering Algorithm[J]. Computer & Digital Engineering, 2010, 38(11): 38-41. |