Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (11): 2904-2917.doi: 10.16182/j.issn1004731x.joss.25-0073
• Papers • Previous Articles
Zhang Zhili, Liu Jin, Zhou Zhaofa, Liang Zhe, Zhang Yunhao
Received:2025-01-21
Revised:2025-06-10
Online:2025-11-18
Published:2025-11-27
Contact:
Liu Jin
CLC Number:
Zhang Zhili, Liu Jin, Zhou Zhaofa, Liang Zhe, Zhang Yunhao. Research on Temperature Compensation Technology of Fiber Optic Gyroscope based on ISCSO-BP Neural Network Model[J]. Journal of System Simulation, 2025, 37(11): 2904-2917.
Table 2
Comparison of performance parameters of various algorithms
| 函数 | 指标 | SCSO | DBO | WOA | ZOA | ISCSO |
|---|---|---|---|---|---|---|
| F1 | Mean | 5.854 5×10-4 | 5.967 8×10-4 | 5.656 2×10-4 | 6.462 0×10-4 | 5.204 3×10-4 |
| Std | 3.049 87×10-4 | 3.095 7×10-4 | 3.223 8×10-4 | 2.738 3×10-4 | 2.934 8×10-4 | |
| Cr/% | 100 | 100 | 100 | 99 | 100 | |
| Iter | 59.24 | 69.17 | 35.60 | 77.12 | 40.06 | |
| F2 | Mean | -38.797 2 | -38.735 3 | -38.735 7 | -38.425 1 | -38.804 4 |
| Std | 0.058 2 | 0.046 26 | 0.045 0 | 0.752 3 | 0.047 0 | |
| Cr/% | 54 | 5 | 4 | 50 | 58 | |
| Iter | 471.30 | 480.91 | 487.37 | 420.57 | 457.83 | |
| F3 | Mean | 0.997 5 | 0.997 5 | 0.996 7 | 0.997 5 | 0.997 7 |
| Std | 1.395 4×10-11 | 1.276 5×10-11 | 3.744 3×10-3 | 6.291 8×10-12 | 7.148 6×10-12 | |
| Cr/% | 0 | 0 | 0 | 0 | 0 | |
| Iter | 500 | 500 | 500 | 500 | 500 | |
| F4 | Mean | -1.031 1 | -1.031 1 | -1.031 1 | -1.031 63 | -1.031 3 |
| Std | 2.955 5×10-4 | 2.844 3×10-4 | 2.904 0×10-4 | 2.781 0×10-4 | 2.700 3×10-4 | |
| Cr/% | 100 | 100 | 100 | 100 | 100 | |
| Iter | 8.69 | 8.61 | 13.37 | 6.92 | 7.28 | |
| F5 | Mean | 6.388 8×10-4 | 1.223 3×10-3 | 3.884 2×10-3 | 5.932 3×10-4 | 5.462 6×10-4 |
| Std | 3.750 5×10-4 | 7.078 2×10-4 | 3.916 8×10-3 | 3.134 9×10-4 | 2.840 8×10-4 | |
| Cr/% | 97 | 46 | 31 | 100 | 100 | |
| Iter | 142.92 | 411.73 | 433.61 | 66.59 | 60.17 | |
| F6 | Mean | 5.083 4×10-4 | 6.523 1×10-4 | 7.947 3×10-4 | 7.498 2×10-4 | 4.576 9×10-4 |
| Std | 3.001 9×10-4 | 2.485 0×10-4 | 2.444 8×10-4 | 2.717 6×10-4 | 2.825 8×10-4 | |
| Cr/% | 100 | 100 | 100 | 100 | 100 | |
| Iter | 20.61 | 47.67 | 103 | 20.31 | 8.04 | |
| F7 | Mean | 3.902 1×10-4 | 3.953 3×10-4 | 3.863 2×10-4 | 2.654 8×10-4 | 2.414 8×10-4 |
| Std | 3.297 4×10-4 | 3.472 4 ×10-4 | 3.196 4×10-4 | 2.830 3×10-4 | 2.520 9×10-4 | |
| Cr/% | 100 | 89 | 94 | 95 | 100 | |
| Iter | 13.86 | 113.07 | 163.62 | 69.44 | 4.96 |
| [1] | Shupe D M. Thermally Induced Nonreciprocity in the Fiber-optic Interferometer[J]. Applied Optics, 1980, 19(5): 654-655. |
| [2] | Shupe D M. Fiber Resonator Gyroscope: Sensitivity and Thermal Nonreciprocity[J]. Applied Optics, 1981, 20(2): 286-289. |
| [3] | 冯丽爽, 南书志, 金靖. 光纤陀螺温度建模及补偿技术研究[J]. 宇航学报, 2006, 27(5): 939-941, 1049. |
| Feng Lishuang, Shuzhi Nan, Jin Jing. Research on Modeling and Compensation Technology for Temperature Errors of FOG[J]. Journal of Astronautics, 2006, 27(5): 939-941, 1049. | |
| [4] | 韩冰, 林玉荣, 邓正隆. 光纤陀螺温度漂移误差的建模与补偿综述[J]. 中国惯性技术学报, 2009, 17(2): 218-224. |
| Han Bing, Lin Yurong, Deng Zhenglong. Overview 0n Modeling and Compensation of FOG Temperature Drift[J]. Journal of Chinese Inertial Technology, 2009, 17(2): 218-224. | |
| [5] | 赵深, 何巍, 辛璟焘, 等. 基于CSAPSO-BP神经网络的光纤陀螺温度补偿研究[J]. 压电与声光, 2023, 45(4): 589-594. |
| Zhao Shen, He Wei, Xin Jingtao, et al. Research on Temperature Compensation of Fiber Optic Gyroscope Based on CSAPSO-BP Neural Network[J]. Piezoelectrics & Acoustooptics, 2023, 45(4): 589-594. | |
| [6] | Jiang Yufei, He Kunpeng, Tan Panlong, et al. Enhancing FOG Temperature Compensation Using LSTM Method[C]//2023 42nd Chinese Control Conference (CCC). Piscataway: IEEE, 2023: 3878-3882. |
| [7] | Song Yuhuan, Lu Lichuan, Wang Gui, et al. Study of Modeling and Temperature Compensation Technology of Airborne FOG Components[C]///International Conference on Mechanisms and Robotics (ICMAR 2022). Bellingham: SPIE, 2022: 123310X. |
| [8] | 姚成敏, 朱节中, 杨再强. 蜣螂优化算法在Canny边缘检测算法中的应用[J]. 国外电子测量技术, 2024, 43(4): 143-151. |
| Yao Chengmin, Zhu Jiezhong, Yang Zaiqiang. Application of Dung Beetle Optimization Algorithm in Canny Edge Detection Algorithm[J]. Foreign Electronic Measurement Technology, 2024, 43(4): 143-151. | |
| [9] | 佟林, 覃方君, 冯卡力, 等. 基于粒子群优化算法的光纤陀螺温度误差分段补偿方法[J]. 中国惯性技术学报, 2019, 27(4): 505-509. |
| Tong Lin, Qin Fangjun, Feng Kali, et al. Segmentation Compensation Method for FOG Temperature Error Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Inertial Technology, 2019, 27(4): 505-509. | |
| [10] | 王瑞, 郑百东, 李飞, 等. ELM-AdaBoost模型在光纤陀螺温度误差补偿中的应用[J]. 兵工自动化, 2024, 43(2): 63-68. |
| Wang Rui, Zheng Baidong, Li Fei, et al. Application of ELM-AdaBoost Model in Temperature Error Compensation of Fiber Optic Gyroscope[J]. Ordnance Industry Automation, 2024, 43(2): 63-68. | |
| [11] | 贾朔, 车昊, 李洋, 等. 基于BP神经网络的光纤陀螺误差补偿方法[J]. 物理与工程, 2020, 30(4): 116-120. |
| Jia Shuo, Che Hao, Li Yang, et al. The Fiber Optic Gyro Error Compensation by Using BP Neural Network[J]. Physics and Engineering, 2020, 30(4): 116-120. | |
| [12] | Seyyedabbasi Amir, Kiani Farzad. Sand Cat Swarm Optimization: A Nature-inspired Algorithm to Solve Global Optimization Problems[J]. Engineering With Computers, 2023, 39(4): 2627-2651. |
| [13] | 蒋开正, 吕丽平. 改进沙猫群优化算法优化堆叠降噪自动编码器的发动机故障诊断[J]. 机械设计, 2023, 40(8): 56-62. |
| Jiang Kaizheng, Liping Lü. Optimization of Fault Diagnosis for Stacked Denoising Auto Encoder's Engine by Improved Sand Cat Swarm Optimization Algorithm[J]. Journal of Machine Design, 2023, 40(8): 56-62. | |
| [14] | 张志利, 刘瑾, 周召发, 等. 基于沙猫群优化算法和BP模型的光纤陀螺温度补偿研究[J]. 火箭军工程大学学报, 2024, 38(4): 54-60, 67. |
| Zhang Zhili, Liu Jin, Zhou Zhaofa, et al. A Fiber Optic Gyroscope Temperature Compensation Method Based on SCSO-BP Model[J]. Journal of Rocket Force University of Engineering, 2024, 38(4): 54-60, 67. | |
| [15] | 中国人民解放军总装备部. 光纤陀螺仪测试方法: [S]. 北京: 总装备部军标出版发行部, 2015: 1-35. |
| General Equipment Department of the Chinese People's Liberation Army. Measurement Methods for Fiber Optic Gyroscope: [S]. Beijing: General Equipment Department Military Standard Publishing and Distribution Department, 2015: 1-35. |
| [1] | Yuqi Ji, Huan Xie, Shaoyu Shi, Ping He, Nan Jin, Huili Wang. Voltage and Reactive Power Combinational Evaluation of Regional Power Grid Based on EWM-AHP-BP Neural Network [J]. Journal of System Simulation, 2023, 35(4): 843-852. |
| [2] | Xiaoan Sun, Xiaoli Luan, Fei Liu. Electronic Solid Waste Prediction Based on Intelligent Optimization Grey Model [J]. Journal of System Simulation, 2022, 34(3): 536-542. |
| [3] | Wang Haichao, Yin Yong. Intelligent Evaluation of Rescuing Persons From Water in Navigation Simulator [J]. Journal of System Simulation, 2021, 33(11): 2647-2655. |
| [4] | Tang Shaohu, Zhou Jin, Shang Chunlin, Zheng Guorong. Optimization Model and Method of Urban Road Traffic Signal Control under Rainfall Environment [J]. Journal of System Simulation, 2020, 32(2): 149-156. |
| [5] | Yang Wenfeng, Wang Yan, Ji Zhichen. Prediction of N-acetylglucosamine Content Based on RF-GA-BP Neural Network [J]. Journal of System Simulation, 2020, 32(10): 2034-2040. |
| [6] | Kong Hongshan, Yu Bin. An Improved Algorithm of VIRE Based on BP Neural Network [J]. Journal of System Simulation, 2018, 30(9): 3586-3595. |
| [7] | Jia Lishan, Liu Zhe, Sun Yi. Intelligent Diagnosis of Aircraft Electrical Faults Based on RMBP Neural Network [J]. Journal of System Simulation, 2018, 30(9): 3493-3501. |
| [8] | Shen Yanxia, Miao Beibei. Open Circuit Fault Diagnosis Strategy for Switch of Three Level Inverter [J]. Journal of System Simulation, 2018, 30(8): 3058-3065. |
| [9] | Bai Shuhua, Kuang Mingxing. Design and Study of Forest Fire Forecasting Based on PSO and GA-BP Neural Network [J]. Journal of System Simulation, 2018, 30(5): 1739-1748. |
| [10] | Tao Wenhua, Yuan Zhengbo. Prediction Model of Coke Quality Based on DE-BP Neural Network [J]. Journal of System Simulation, 2018, 30(5): 1650-1656. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||