Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (4): 901-914.doi: 10.16182/j.issn1004731x.joss.22-1430
• Papers • Previous Articles Next Articles
Wang Yubo(), Hu Chengyu(), Gong Wenyin
Received:
2022-11-27
Revised:
2023-01-09
Online:
2024-04-15
Published:
2024-04-18
Contact:
Hu Chengyu
E-mail:yubowang@cug.edu.cn;huchengyu@cug.edu.cn
CLC Number:
Wang Yubo, Hu Chengyu, Gong Wenyin. Handling Constrained Multi-objective Optimization Problems Based on Relationship Between Pareto Fronts[J]. Journal of System Simulation, 2024, 36(4): 901-914.
Table 1
IGD+ results of different algorithms on LIR-CMOP1-14
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
LIRCMOP5 | 1.230 00 (0.004 24)- | 1.200 00 (0.196 00)- | 0.250 00 (0.053 40)- | 0.006 88 (0.001 44)+ | 1.200 00 (0.022 30)- | 1.010 00 (0.398 00)- | 0.123 00 (0.290 00)= | 0.142 00 (0.297 00) |
LIRCMOP6 | 1.350 0 (0.000 184)- | 1.220 0 (0.341 000)- | 0.368 0 (0.271 000)- | 0.050 3 (0.245 000)+ | 1.300 0 (0.185 000)- | 1.060 0 (0.454 000)- | 0.075 9 (0.106 000)= | 0.260 0 (0.450 000) |
LIRCMOP13 | 1.320 0 (0.002 01)- | 0.047 1 (0.001 36)- | 0.043 9 (0.001 27)= | 0.077 9 (0.004 49)- | 1.320 0 (0.009 00)- | 1.100 0 (0.481 00)- | 0.063 4 (0.002 93)- | 0.043 4(0.001 07) |
LIRCMOP14 | 1.270 0 (0.002 110)- | 0.048 6 (0.000 738)- | 0.044 2 (0.000 829)+ | 0.062 6 (0.002 400)- | 1.290 0 (0.078 000)- | 1.030 0 (0.494 000)- | 0.050 9 (0.001 860)- | 0.045 4 (0.001 520) |
LIRCMOP9 | 0.909 (0.134 0)- | 0.317 (0.086 5)- | 0.491 (0.142 0)- | 0.221 (0.084 1)- | 0.362 (0.143 0)- | 0.509 (0.179 0)- | 0.195 (0.088 7)= | 0.158(0.028 4) |
LIRCMOP10 | 0.933 0 (0.072 3)- | 0.301 0 (0.042 2) - | 0.409 0 (0.198 0) - | 0.197 0 (0.097 9) - | 0.332 0 (0.078 8) - | 0.745 0 (0.159 0) - | 0.115 0 (0.058 9)- | 0.058 3(0.081 0) |
LIRCMOP11 | 0.677 (0.214 0)- | 0.175 (0.038 7)- | 0.280 (0.148 0)- | 0.230 (0.144 0)- | 0.413 (0.119 0)- | 0.713 (0.164 0)- | 0.150 (0.139 0)- | 0.112 (0.018 7) |
LIRCMOP12 | 0.556 (0.207 0)- | 0.235 (0.151 0)= | 0.315 (0.115 0)- | 0.151 (0.071 2) = | 0.223 (0.056 2)- | 0.371 (0.077 2)- | 0.160 (0.043 8)= | 0.144(0.029 9) |
LIRCMOP1 | 0.188 0 (0.011 3)- | 0.259 0 (0.049 5)- | 0.268 0 (0.032 3)- | 0.024 2 (0.033 6)+ | 0.266 (0.012 5)- | 0.186 (0.016 0)- | 0.112 0 (0.045 3)- | 0.049 3 (0.030 5) |
LIRCMOP2 | 0.110 0 (0.012 20)- | 0.140 0 (0.056 00)- | 0.180 0 (0.022 70)- | 0.010 9 (0.007 31)+ | 0.185 0 (0.019 40)- | 0.114 0 (0.009 56)- | 0.024 1 (0.033 10)+ | 0.024 6 (0.012 90) |
LIRCMOP3 | 0.187 0 (0.023 9)- | 0.259 0 (0.062 7)- | 0.252 0 (0.046 2)- | 0.071 1 (0.061 7)= | 0.282 0 (0.010 5)- | 0.185 0 (0.015 2)- | 0.064 7 (0.047 4)- | 0.034 3 (0.021 1) |
LIRCMOP4 | 0.130 0 (0.020 4)- | 0.203 0 (0.085 5)- | 0.197 0 (0.021 1)- | 0.040 4 (0.037 2)= | 0.202 0 (0.015 9)- | 0.123 0 (0.013 8)- | 0.072 9 (0.056 0- | 0.029 6(0.021 4) |
LIRCMOP7 | 0.479 0 (0.675 0)- | 0.338 0 (0.544 0)- | 0.108 0 (0.020 3)- | 0.108 0 (0.031 3)- | 1.310 0 (0.652 0)- | 0.251 0 (0.091 2)- | 0.021 7 (0.031 7)- | 0.015 4 (0.023 9) |
LIRCMOP8 | 1.240 0 (0.690 0)- | 0.712 0 (0.662 0)- | 0.180 0 (0.044 3)- | 0.157 0 (0.051 7)- | 1.540 0 (0.454 0)- | 0.391 0 (0.273 0)- | 0.011 6 (0.018 4)+ | 0.033 3 (0.072 3) |
+/-/= | 0/14/0 | 0/13/1 | 1/12/1 | 4/7/3 | 0/14/0 | 0/14/0 | 2/8/4 |
Table 2
HV results of different algorithms on LIR-CMOP1-14
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
LIRCMOP5 | 0 (0)- | 0.006 14 (0.033 6)- | 0.145 00 (0.022 1)- | 0.290 00 (0.001 3)+ | 0 (0)- | 0.029 00 (0.054 5)- | 0.252 00 (0.074 5) = | 0.245 00 (0.078 9) |
LIRCMOP6 | 0 (0)- | 0.009 96 (0.026 0)- | 0.092 50 (0.026 7)- | 0.190 00 (0.035 9)+ | 0.001 90 (0.010 4)- | 0.024 00 (0.037 5)- | 0.169 00 (0.034 5) = | 0.138 00 (0.074 3) |
LIRCMOP13 | 0.000 115 (0.000 137)- | 0.546 000 (0.001 880)- | 0.556 000 (0.001 290)= | 0.510 000 (0.006 180)- | 0.003 310 (0.012 500)- | 0.072 100 (0.138 000)- | 0.535 000 (0.002 910)- | 0.556 000 (0.001 050) |
LIRCMOP14 | 0.000 37 (0.000 334)- | 0.546 00 (0.000 833)- | 0.556 00 (0.000 965)+ | 0.530 00 (0.003 720)- | 0.003 68 (0.018 600)- | 0.089 60 (0.153 000)- | 0.549 00 (0.002 010)- | 0.555 00 (0.001 240) |
LIRCMOP9 | 0.137 (0.057 8)- | 0.349 (0.056 5)- | 0.279 (0.064 3)- | 0.437 (0.048 3)- | 0.331 (0.074 7)- | 0.242 (0.083 3)- | 0.442 (0.065 4) = | 0.449 (0.026 3) |
LIRCMOP10 | 0.064 7 (0.017 9)- | 0.504 0 (0.034 6)- | 0.413 0 (0.155 0)- | 0.579 0 (0.071 9)- | 0.472 0 (0.075 0)- | 0.151 0 (0.048 8)- | 0.639 0 (0.038 2)- | 0.672 0 (0.055 7) |
LIRCMOP11 | 0.270 (0.102 0)- | 0.606 (0.250 0)- | 0.490 (0.108 0)- | 0.512 (0.110 0)- | 0.376 (0.079 6)- | 0.191 (0.072 2)- | 0.577 (0.109 0)- | 0.607 (0.016 8) |
LIRCMOP12 | 0.362 (0.097 7)- | 0.506 (0.054 1) = | 0.440 (0.050 8)- | 0.525 (0.050 2) = | 0.475 (0.043 6)- | 0.370 (0.052 7)- | 0.521 (0.030 9) = | 0.530 (0.019 3) |
LIRCMOP1 | 0.136 (0.005 18)- | 0.114 (0.021 10)- | 0.108 (0.012 90)- | 0.225 (0.020 50)+ | 0.107 (0.008 56)- | 0.137 (0.008 17)- | 0.176 (0.024 90)- | 0.206 (0.016 50) |
LIRCMOP2 | 0.262 (0.009 11)- | 0.260 (0.030 30)- | 0.221 (0.017 00)- | 0.355 (0.007 64)+ | 0.217 (0.016 10)- | 0.262 (0.008 36)- | 0.338 (0.033 10)- | 0.341 (0.013 20) |
LIRCMOP3 | 0.126 0 (0.010 30)- | 0.096 5 (0.027 60)- | 0.102 0 (0.016 80)- | 0.173 0 (0.027 20) = | 0.090 5 (0.006 14)- | 0.124 (0.008 65)- | 0.176 (0.024 10)- | 0.188 (0.008 00) |
LIRCMOP4 | 0.224 (0.012 50)- | 0.191 (0.038 20)- | 0.188 (0.013 60)- | 0.288 (0.276 00) = | 0.185 (0.108 00)- | 0.230 (0.009 14)- | 0.265 (0.039 00)- | 0.294 (0.016 40) |
LIRCMOP7 | 0.187 0 (0.105 00)- | 0.208 0 (0.085 70)- | 0.245 0 (0.008 76)- | 0.246 0 (0.013 20)- | 0.052 8 (0.098 80)- | 0.196 0 (0.023 00)- | 0.287 0 (0.014 80)- | 0.289 00 (0.011 50) |
LIRCMOP8 | 0.066 2 (0.103 00)- | 0.135 0 (0.099 10)- | 0.230 0 (0.010 40)- | 0.235 0 (0.016 30)- | 0.021 50 (0.066 00)- | 0.174 (0.039 10)- | 0.291 (0.008 90)+ | 0.284 (0.024 00) |
+/-/= | 0/14/0 | 0/13/1 | 1/12/1 | 4/7/3 | 0/14/0 | 0/14/0 | 1/9/4 |
Table 3
IGD+ results of different algorithms on DAS-CMOP1-9
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
+/-/= | 0/8/1 | 0/8/1 | 1/5/3 | 0/9/0 | 0/4/0 | 0/9/0 | 0/7/2 | |
DASCMOP1 | 0.729 00 (0.024 800)- | 0.166 00 (0.003 170)- | 0.728 00 (0.053 900)- | 0.059 70 (0.104 000)- | 0.782 00 (0.041 500)- | 0.608 00 (0.143 000)- | 0.017 80 (0.085 500) = | 0.002 23 (0.000 102) |
DASCMOP2 | 0.151 00 (0.007 590)- | 0.056 30 (0.018 800)- | 0.151 00 (0.009 150)- | 0.004 03 (0.000 180)- | 0.671 00 (0.231 000)- | 0.130 00 (0.040 500)- | 0.006 44 (0.014 300) = | 0.003 86 (0.000 180) |
DASCMOP3 | 0.187 00 (0.014 100)- | 0.122 00 (0.031 000)- | 0.197 00 (0.015 300)- | 0.129 00 (0.082 0000)- | 0.685 00 (0.161 000)- | 0.190 00 (0.024 000)- | 0.139 00 (0.073 500)- | 0.005 54 (0.000 142) |
DASCMOP4 | 0.063 20 (0.113 00)- | 0.007 59 (0.001 50)- | 0.044 10 (0.086 40) = | 0.243 00 (0.145 00)- | NaN (NaN) | 0.018 10 (0.007 27)- | 0.112 00 (0.143 00)- | 0.007 27 (0.035 80) |
DASCMOP5 | 0.075 80 (0.155 000)- | 0.005 72 (0.000 833)- | 0.071 00 (0.160 000) = | 0.167 00 (0.253 000)- | NaN (NaN) | 0.018 70 (0.004 000)- | 0.037 60 (0.099 900)- | 0.001 83 (0.000 081) |
DASCMOP6 | 0.145 0 (0.179 00)- | 0.015 4 (0.008 06) = | 0.216 0 (0.221 00)- | 0.247 0 (0.303 00)- | NaN (NaN) | 0.075 2 (0.139 00)- | 0.361 0 (0.175 00)- | 0.039 7 (0.092 20) |
DASCMOP7 | 0.025 8 (0.001 710)- | 0.027 2 (0.001 010)- | 0.023 0(0.000 633) = | 0.187 0 (0.164 000)- | NaN (NaN) | 0.099 2 (0.017 6000)- | 0.030 8 (0.011 000)- | 0.023 4 (0.001 010) |
DASCMOP8 | 0.019 4 (0.002 570) = | 0.022 4 (0.002 570)- | 0.018 4(0.000 588)+ | 0.165 0 (0.208 000)- | NaN (NaN) | 0.059 0 (0.015 800)- | 0.022 9 (0.004 160)- | 0.018 8 (0.000 753) |
DASCMOP9 | 0.251 0 (0.027 10)- | 0.186 0 (0.031 90)- | 0.232 0 (0.003 00)- | 0.166 0 (0.128 00)- | 0.458 0 (0.094 30)- | 0.211 0 (0.026 10)- | 0.023 6 (0.001 02)- | 0.021 2 (0.001 12) |
Table 4
HV results of different algorithms on DAS-CMOP1-9
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
+/-/= | 0/9/0 | 0/8/1 | 2/6/1 | 0/8/1 | 0/4/0 | 0/9/0 | 0/7/2 | |
DASCMOP1 | 0.007 04 (0.004 950)- | 0.167 00 (0.002 790)- | 0.007 89 (0.012 100)- | 0.195 00 (0.028 900)- | 0.002 44 (0.004 550)- | 0.03 25 (0.040 000)- | 0.207 00 (0.025 100) = | 0.212 00 (0.000 588) |
DASCMOP2 | 0.249 0 (0.004 700)- | 0.306 0 (0.008 150)- | 0.254 0 (0.003 580)- | 0.355 0 (0.000 113) = | 0.061 7 (0.079 200)- | 0.266 0 (0.014 400)- | 0.353 0 (0.012 000) = | 0.355 0 (0.000 145) |
DASCMOP3 | 0.212 0 (0.003 860)- | 0.243 0 (0.015 200)- | 0.209 0 (0.000 217)- | 0.243 0 (0.046 100)- | 0.036 7 (0.052 600)- | 0.212 0 (0.011 900)- | 0.238 0 (0.041 600)- | 0.312 0 (0.000 298) |
DASCMOP4 | 0.177 (0.044 00)- | 0.195 (0.005 15)- | 0.190 (0.024 10)- | 0.126 (0.057 50)- | NaN (NaN) | 0.180 (0.008 06)- | 0.157 (0.056 10)- | 0.203 (0.007 35) |
DASCMOP5 | 0.306 (0.092 700)- | 0.348 (0.000 706)- | 0.311 (0.092 800) = | 0.263 (0.129 000)- | NaN (NaN) | 0.338 (0.002 920)- | 0.329 (0.058 000)- | 0.352 (0.000 100) |
DASCMOP6 | 0.236 (0.094 20)- | 0.307 (0.002 21) = | 0.200 (0.115 00)- | 0.202 (0.124 00)- | NaN (NaN) | 0.275 (0.064 80)- | 0.128 (0.086 70)- | 0.292 (0.051 60) |
DASCMOP7 | 0.287 (0.000 187)- | 0.287 (0.000 765)- | 0.289 (0.000 198)+ | 0.212 (0.073 700)- | NaN (NaN) | 0.252 (0.008 890)- | 0.284 (0.005 740)- | 0.289 (0.000 417) |
DASCMOP8 | 0.206 (0.001 900)- | 0.203 (0.001 620)- | 0.208 (0.000 261)+ | 0.142 (0.073 000)- | NaN (NaN) | 0.182 (0.007 310)- | 0.204 (0.002 570)- | 0.207 (0.000 332) |
DASCMOP9 | 0.125 0 (0.007 510)- | 0.143 0 (0.010 200)- | 0.131 0 (0.009 750)- | 0.152 0 (0.039 100)- | 0.063 9 (0.024 200)- | 0.125 0 (0.008 000)- | 0.203 0 (0.000 482)- | 0.204 (0.000 526) |
Table 5
IGD+ results of different algorithms on DTLZ benchmark suit
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
+/-/= | 0/7/3 | 3/6/1 | 2/6/2 | 0/10/0 | 0/7/0 | 0/9/1 | 0/10/0 | |
C1_DTLZ1 | 0.014 6 (0.000 221)- | 0.016 3 (0.000 128)- | 0.014 7 (0.000 275)- | 0.019 0 (0.000 838)- | NaN (NaN) | 0.249 0 (0.088 100)- | 0.018 0 (0.001 410)- | 0.014 2 (0.000 172) |
C1_DTLZ3 | 1.120 0 (2.750 0)- | 0.128 0 (0.461 0)- | 0.230 0 (1.460 0) = | 2.970 0 (3.910 0)- | 0.492 0 (1.470 0)- | 5.210 0 (3.460 0)- | 2.900 0 (3.730 0)- | 0.024 2 (0.001 4) |
C2_DTLZ2 | 0.019 2 (0.000 610) = | 0.023 5 (0.000 438)- | 0.019 5 (0.000 907)- | 0.024 8 (0.000 716)- | 0.036 4 (0.007 100)- | 0.037 4 (0.002 860)- | 0.022 2 (0.002 090)- | 0.018 5 (0.000 654) |
C3_DTLZ4 | 0.059 3 (0.002 16)- | 0.061 0 (0.002 38)- | 0.321 0 (0.041 70)- | 0.097 2 (0.034 60)- | 0.106 0 (0.007 05)- | 0.086 7 (0.003 83)- | 0.069 4 (0.003 33)- | 0.056 1 (0.002 29) |
DC1_DTLZ1 | 0.008 67 (0.000 599) = | 0.010 60 (0.000 126)- | 0.010 60 (0.003 260)- | 0.029 50 (0.045 600)- | 0.018 90 (0.004 020)- | 0.455 00 (0.306 000)- | 0.009 86 (0.000 668)- | 0.008 44 (0.000 417) |
DC1_DTLZ3 | 0.014 4 (0.001 160) = | 0.016 1 (0.000 708)- | 0.076 1 (0.089 700) = | 0.469 0 (0.726 000)- | 1.600 0 (2.300 000)- | 1.820 0 (0.668 000)- | 0.027 9 (0.028 900)- | 0.014 4 (0.001 210) |
DC2_DTLZ1 | 0.131 0 (0.075 900)- | 0.016 4 (0.000 175)+ | 0.015 1 (0.000 520)+ | 0.031 5 (0.038 200)- | NaN (NaN) | 0.255 0 (0.069 600)- | 0.028 9 (0.028 400)- | 0.024 5 (0.037 900) |
DC2_DTLZ3 | 0.565 (0.003 07)- | 0.374 (0.258 00)= | 0.455 (0.218 00)- | 0.375 (0.264 00)- | NaN (NaN) | 0.989 (0)= | 0.579 (0.016 10)- | 0.152(0.206 00) |
DC3_DTLZ1 | 0.083 90 (0.082 600)- | 0.006 51 (0.000 165)+ | 0.025 80 (0.006 820)- | 0.561 00 (0.956 000)- | 2.070 00 (2.960 000)- | 1.450 00 (0.777 000)- | 0.018 00 (0.067 200)- | 0.010 60 (0.030 000) |
DC3_DTLZ3 | 1.200 00 (0.491 000)- | 0.009 81 (0.000 503)+ | 0.299 00 (0.424 000)+ | 1.940 00 (1.770 000)- | 7.880 00 (3.980 000)- | 3.580 00 (0.724 000)- | 0.722 00 (0.496 000)- | 0.573 00 (0.320 000) |
Table 6
HV results of different algorithms on DTLZ benchmark suit
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
+/-/= | 0/7/3 | 3/6/1 | 2/6/2 | 0/9/1 | 0/7/0 | 0/9/1 | 0/9/1 | |
C1_DTLZ1 | 0.836 (0.004 63)- | 0.837 (0.001 19)- | 0.833 (0.005 24)- | 0.818 (0.003 52)- | NaN (NaN) | 0.245 (0.193 00)- | 0.828 (0.005 99)- | 0.839 (0.003 22) |
C1_DTLZ3 | 0.437 00 (0.212 00)- | 0.503 00 (0.123 00)- | 0.528 00 (0.111 00) = | 0.325 00 (0.252 00)- | 0.346 00 (0.212 00)- | 0.001 16 (0.006 38)- | 0.251 00 (0.255 00)- | 0.558 00 (0.002 43) |
C2_DTLZ2 | 0.516 (0.001 46) = | 0.507 (0.001 78)- | 0.516 (0.001 30)- | 0.499 (0.002 80)- | 0.468 (0.012 50)- | 0.461 (0.008 77)- | 0.509 (0.003 83)- | 0.517 (0.001 60) |
C3_DTLZ4 | 0.788 (0.001 27)- | 0.785 (0.001 56)- | 0.546 (0.075 80)- | 0.756 (0.029 30)- | 0.755 (0.004 96)- | 0.766 (0.002 89)- | 0.781 (0.001 96)- | 0.780 (0.001 37) |
DC1_DTLZ1 | 0.631 0 (0.002 02)- | 0.627 0 (0.001 11)- | 0.619 0 (0.019 90)- | 0.562 0 (0.073 70)- | 0.577 0 (0.025 10)- | 0.090 7 (0.078 20)- | 0.628 0 (0.002 20)- | 0.632 0 (0.001 44) |
DC1_DTLZ3 | 0.471 (0.002 10) = | 0.463 (0.002 25)- | 0.433 (0.056 80) = | 0.264 (0.156 00)- | 0.159 (0.183 00)- | 0 (0)- | 0.446 (0.051 30)- | 0.472 (0.002 21) |
DC2_DTLZ1 | 0.549 (0.200 000)- | 0.838 (0.000 355)+ | 0.839 (0.001 120)+ | 0.784 (0.093 800)- | NaN (NaN) | 0.239 (0.149 000)- | 0.807 (0.070 3000)- | 0.818 (0.092 000) |
DC2_DTLZ3 | 0.013 30 (0.000 733) = | 0.201 00 (0.259 000) = | 0.122 00 (0.221 000)- | 0.201 00 (0.251 000)- | NaN (NaN) | 0 (0)= | 0.009 18 (0.001 740)- | 0.406 00 (0.209 000) |
DC3_DTLZ1 | 0.323 00 (0.215 00)- | 0.523 00 (0.003 15)+ | 0.409 00 (0.035 00)- | 0.123 00 (0.169 00)- | 0.027 50 (0.084 40)- | 0.006 03 (0.020 20)- | 0.515 00 (0.097 30)- | 0.521 00 (0.079 10) |
DC3_DTLZ3 | 0 (0)- | 0.361 0 (0.001 67)+ | 0.226 0 (0.167 00)+ | 0.020 8 (0.065 10) = | 0 (0)- | 0 (0)- | 0.048 5 (0.114 00) = | 0.048 4 (0.126 00) |
Table 7
Friedman test results of different algorithms
算法 | IGD+ 排序值 | p-值 | HV 排序值 | p-值 |
---|---|---|---|---|
BiCo | 5.333 0 | 0 | 5.560 6 | 0 |
C-TAEA | 3.909 1 | 0.000 072 | 3.697 0 | 0.000 036 |
CMOEA-MS | 4.484 8 | 0.000 001 | 4.424 2 | 0.000 002 |
PPS | 4.242 4 | 0.000 006 | 4.121 2 | 0.000 019 |
ToP | 7.212 1 | 0 | 7.242 4 | 0 |
TiGE-2 | 5.818 2 | 0 | 5.924 2 | 0 |
URCMO | 3.484 8 | 0.001 089 | 3.484 8 | 0.001 299 |
RBPF | 1.515 2 | 1.545 5 |
Table 10
HV results of different algorithms on three real-world CMOPs
问题 | BiCo | C-TAEA | CMOEA-MS | PPS | ToP | TiGE-2 | URCMO | RBPF |
---|---|---|---|---|---|---|---|---|
+/-/= | 1/2/0 | 0/3/0 | 0/2/1 | 0/3/0 | 0/3/0 | 0/3/0 | 0/2/1 | |
Bulk Carrier Design | 2.5879e-1 (1.91e-2) - | 2.5172e-1 (1.53e-2) - | 2.4285e-1 (6.15e-2) - | 2.1847e-1 (5.19e-2) - | 2.4058e-1 (4.68e-2) - | 2.3525e-1 (5.27e-2) - | 2.9038e-1 (3.15e-2) = | 3.0239e-1 (4.37e-2) |
Process Flow Sheeting | 1.5709e+11 (6.74e+11)+ | 2.8933e+3 (1.07e+4) - | 3.4969e+12 (1.91e+13) = | 1.0634e+7 (2.18e+7) - | 1.9473e+9 (7.15e+9) - | 4.1662e+4 (2.04e+5) - | 8.3815e+9 (2.61e+10) - | 4.2693e+10 (1.70e+11) |
Process Synthesis | 2.4152e-1 (1.07e-5) - | 2.4114e-1 (1.81e-4) - | 2.3160e-1 (1.18e-5) - | 2.4121e-1 (5.36e-5) - | 2.4120e-1 (7.65e-5) - | 1.8858e-1 (1.87e-2) - | 2.4151e-1 (1.38e-5) - | 2.4154e-1 (1.13e-5) |
1 | Jozefowiez Nicolas, Semet Frédéric, El-Ghazali Talbi. Multi-objective Vehicle Routing Problems[J]. European Journal of Operational Research, 2008, 189(2): 293-309. |
2 | Saravanan R, Ramabalan S, Godwin Raja Ebenezer N, et al. Evolutionary Multi Criteria Design Optimization of Robot Grippers[J]. Applied Soft Computing, 2009, 9(1): 159-172. |
3 | Mala-Jetmarova H, Sultanova Nargiz, Savic D. Lost in Optimisation of Water Distribution Systems?A Literature Review of System Operation[J]. Environmental Modelling & Software, 2017, 93: 209-254. |
4 | Liu Zhizhong, Wang Yong. Handling Constrained Multiobjective Optimization Problems with Constraints in Both the Decision and Objective Spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 870-884. |
5 | Fan Zhun, Li Wenji, Cai Xinye, et al. Push and Pull Search for Solving Constrained Multi-objective Optimization Problems[J]. Swarm and Evolutionary Computation(S2210-6502), 2019, 44:665-679. |
6 | Li Ke, Chen Renzhi, Fu Guangtao, et al. Two-archive Evolutionary Algorithm for Constrained Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 303-315. |
7 | Ma Zhongwei, Wang Yong, Song Wu. A New Fitness Function with Two Rankings for Evolutionary Constrained Multiobjective Optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 5005-5016. |
8 | Zhou Yalan, Zhu Min, Wang Jiahai, et al. Tri-goal Evolution Framework for Constrained Many-objective Optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(8): 3086-3099. |
9 | Hernández Sosa, Adrián Víctor, Oliver Schütze, et al. The Set-based Hypervolume Newton Method for Bi-objective Optimization[J]. IEEE Transactions on Cybernetics, 2020, 50(5): 2186-2196. |
10 | Tian Ye, Zhang Tao, Xiao Jianhua, et al. A Coevolutionary Framework for Constrained Multiobjective Optimization Problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 102-116. |
11 | Liang Jing, Qiao Kangjia, Yu Kunjie, et al. Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(6): 3873-3886. |
12 | Zitzler Eckart, Laumanns Marco, Thiele Lothar. SPEA2: Improving the Strength Pareto Evolutionary Algorithm: TIK-report 103[R]. Zurich: ETH Zurich, 2001,103. |
13 | Tian Ye, Zhang Yajie, Su Yansen, et al. Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9559-9572. |
14 | Liu Zhizhong, Wang Bingchuan, Tang Ke. Handling Constrained Multiobjective Optimization Problems via Bidirectional Coevolution[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10163-10176. |
15 | Tian Ye, Cheng Ran, Zhang Xingyi, et al. PlatEMO: A MATLAB Platform for Evolutionary Multi-objective Optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
16 | Kalyanmoy Deb, Himanshu Jain. An Evolutionary Many-objective Optimization Algorithm Using Reference-point-based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601. |
17 | Fan Zhun, Li Wenji, Cai Xinye, et al. Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit[J]. Evolutionary Computation, 2020, 28(3): 339-378. |
18 | Fan Zhun, Li Wenji, Cai Xinye, et al. An Improved Epsilon Constraint-handling Method in MOEA/D for CMOPs with Large Infeasible Regions[J]. Soft Computing, 2019, 23(23): 12491-12510. |
19 | Parsons M G, Scott R L. Formulation of Multicriterion Design Optimization Problems for Solution with Scalar Numerical Optimization Methods[J]. Journal of Ship Research, 2004, 48(1): 61-76. |
20 | Floudas C A. Nonlinear and Mixed-integer Optimization: Fundamentals and Applications[M]. Oxford: Oxford University Press, 1995. |
21 | Kocis G R, Grossmann I E. A Modelling and Decomposition Strategy for the Minlp Optimization of Process Flowsheets[J]. Computers & Chemical Engineering, 1989, 13(7): 797-819. |
22 | 张进峰, 杨涛宁, 马伟皓. 基于多目标粒子群算法的船舶航速优化[J]. 系统仿真学报, 2019, 31(4): 787-794. |
Zhang Jinfeng, Yang Taoning, Ma Weihao. Ship Speed Optimization Based on Multi-objective Particle Swarm Algorithm[J]. Journal of System Simulation, 2019, 31(4): 787-794. | |
23 | 闫秀英, 党苗苗. 基于改进多目标粒子群算法的家庭用电时段优化[J]. 系统仿真学报, 2022, 34(1): 70-78. |
Yan Xiuying, Dang Miaomiao. Optimization of Household Electricity Consumption Period Based on Improved Multi-objective Particle Swarm Optimization[J]. Journal of System Simulation, 2022, 34(1): 70-78. |
[1] | Wang Fuyu, Tang Tao. Application of Two-population Fish Swarm Algorithm in Distributed Portfolio [J]. Journal of System Simulation, 2021, 33(9): 2074-2084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||