Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (4): 1076-1089.doi: 10.16182/j.issn1004731x.joss.23-1542
• Papers • Previous Articles
Wang Yushuai1,2, Si Guangya3
Received:
2023-12-18
Revised:
2024-02-07
Online:
2025-04-17
Published:
2025-04-16
Contact:
Si Guangya
CLC Number:
Wang Yushuai, Si Guangya. Capability Dependency Analysis Based on Kill Chain and FDNA[J]. Journal of System Simulation, 2025, 37(4): 1076-1089.
Table 2
Composition and main operations of given SoS
交战方 | 作战力量 | 主要作战行动 |
---|---|---|
红方 | 天基信息系统U1 | 发现蓝方目标并将情报信息发送至前沿指挥所 |
前沿指挥所U2 | 共享情报信息,将情报传送给预警机 | |
预警机编队U3 | 战场态势感知,指控所属力量执行相关作战活动 | |
第一无人侦察编队U4 | 前出抵近侦察,获取蓝方目标信息 | |
第二无人侦察编队U5 | ||
轰炸机编队U6 | 接到命令后从机场起飞,对蓝方水面舰船进行远程奔袭打击 | |
第一战斗机编队U7 | 打击蓝方空中目标,保护红方目标 | |
第二战斗机编队U8 | ||
蓝方 | 预警机T1 | 提供来袭战机、导弹等战场情报信息 |
水面舰船T2 | 在预警机支持下防空反导,打击来袭导弹和战机 | |
战斗机编队T3 | 在预警机支持下打击来袭导弹和战机,协同防护己方目标 |
Table 7
Results of capability dependency network parameters
接受节点 | ||||||
---|---|---|---|---|---|---|
S5 | S6 | F7 | F9 | F11 | ||
供给节点 | S1 | (0.21, 34) | (0.18, 48) | — | — | — |
D2 | (0.18, 56) | (0.23, 59) | — | — | — | |
S3 | — | — | — | (0.12, 43) | (0.11, 49) | |
D4 | (0.43, 62) | (0.51, 57) | — | — | — | |
S5 | — | — | (0.33, 38) | (0.03, 68) | (0.04, 64) | |
S6 | — | — | (0.37, 42) | (0.06, 69) | (0.08, 65) | |
F7 | — | — | — | — | — | |
S8 | — | — | — | (0.43, 26) | (0.15, 81) | |
S10 | — | — | — | (0.17, 75) | (0.39, 33) | |
伪R方正汇总行2检验 | 0.65 | 0.72 | 0.77 | 0.63 | 0.61 |
1 | Cares J R. An Information Age Combat Model[C]//9th International Command and Control Research and Technology Symposium. Washington, DC: CCRP,2004, Paper ID 021. [S.l. : s.n.], 2004. |
2 | 陈登, 陈楚湘, 周春华. 基于OODA环的杀伤网节点重要性评估[J]. 兵工学报, 2024, 45(2): 363-372. |
Chen Deng, Chen Chuxiang, Zhou Chunhua. Importance Evaluation of Kill Network Nodes Based on OODA Loop[J]. Acta Armamentarii, 2024, 45(2): 363-372. | |
3 | 杨圩生, 王钰, 杨洋, 等. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
Yang Weisheng, Wang Yu, Yang Yang, et al. Combat Network Effectiveness Evaluation Under Different Node Attack Strategies Based on Operation Loop[J]. Systems Engineering and Electronics, 2021, 43(11): 3220-3228. | |
4 | 赵丹玲, 谭跃进, 李际超, 等. 基于异质网络的武器装备体系结构抗毁性研究[J]. 系统工程理论与实践, 2019, 39(12): 3197-3207. |
Zhao Danling, Tan Yuejin, Li Jichao, et al. Research on Structural Robustness of Weapon System-of-systems Based on Heterogeneous Network[J]. Systems Engineering-Theory & Practice, 2019, 39(12): 3197-3207. | |
5 | 王耀祖, 尚柏林, 宋笔锋, 等. 基于杀伤链的作战体系网络关键节点识别方法[J]. 系统工程与电子技术, 2023, 45(3): 736-744. |
Wang Yaozu, Shang Bailin, Song Bifeng, et al. Identification Method of Key Node in Operational System-of-systems Network Based on Kill Chain[J]. Systems Engineering and Electronics, 2023, 45(3): 736-744. | |
6 | Khuri A I, Mukhopadhyay S. Response Surface Methodology[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(1): 128-149. |
7 | 于小岚, 熊伟. 基于贝叶斯网络的武器装备体系作战效能评估方法[J]. 火力与指挥控制, 2023, 48(5): 1-8, 17. |
Yu Xiaolan, Xiong Wei. Overview of Operational Effectiveness Evaluation Methods of System of Weapon Equipment Based on Bayesian Network[J]. Fire Control & Command Control, 2023, 48(5): 1-8, 17. | |
8 | 魏东涛, 刘晓东, 周骏, 等. 基于DSM与信息熵的装备体系结构贡献率分析[J]. 系统工程与电子技术, 2022, 44(6): 1927-1933. |
Wei Dongtao, Liu Xiaodong, Zhou Jun, et al. Evaluation of Equipment's Structure Contribution Rate to System-of-systems Based on DSM and Information Entropy[J]. Systems Engineering and Electronics, 2022, 44(6): 1927-1933. | |
9 | 翟豆豆. 基于系统动力学的装备体系建模与仿真[D]. 西安: 西安电子科技大学, 2020. |
Zhai Doudou. Equipment System Modeling and Simulation Based on System Dynamics[D]. Xi'an: XiDian University, 2020. | |
10 | 王竣德. 面向网电空间物理域信息域的相依网络鲁棒性研究[D]. 长沙: 国防科技大学, 2018. |
Wang Junde. Research on the Robustness of Interdependent Networks in Cyberspace Physical and Information Domain[D]. Changsha: National University of Defense Technology, 2018. | |
11 | Garvey P R, Pinto C A. Introduction to Functional Dependency Network Analysis[C]//Proceedings of the the 2nd International Symposium on Engineering Systems. Washington D.C.: International Astronautical Federation (IAF), 2009: 1-12. |
12 | Guariniello C, Grande M, Brand C, et al. Quantifying the Impact of Systems Interdependencies in Space Systems Architectures[C]//70th International Astronautical Congress (IAC). Washington D.C.: International Astronautical Federation (IAF), 2019: 21-25. |
13 | Guariniello C, Marsh T B, Porter R, et al. Artificial Intelligence Agents to Support Data Mining for SoS Modeling of Space Systems Design[C]//2020 IEEE Aerospace Conference. Piscataway: IEEE, 2020: 1-11. |
14 | Costa A, Mcshane M, Pinto A. Investigating Interbank Contagion with Agent-based Modeling and Functional Dependency Network Analysis(FDNA)[J]. SSRN Electronic Journal, 2015. DOI: 10.2139/ssrn.2681693 . |
15 | Roman A, Pinto C A. Systemic Analysis of the Use of Artificial Intelligence (AI) in Regulating Terrorist Content on Social Media Ecosystem Using Functional Dependency Network Analysis (FDNA)[J]. OUR Journal: ODU Undergraduate Research Journal, 2020, 7: 7. |
16 | Guariniello C, DeLaurentis D. Dependency Analysis of System-of-systems Operational and Development Networks[J]. Procedia Computer Science. 2013, 16: 265-274. |
17 | Guariniello C, DeLaurentis D. Communications, Information, and Cyber Security in Systems-of-systems: Assessing the Impact of Attacks through Interdependency Analysis[J]. Procedia Computer Science, 2014, 28: 720-727. |
18 | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
Huan Shunqi, Fang Zhemei, Wang Jianbo. System-of-systems Effectiveness Evaluation Method Based on Functional Dependency Network[J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. | |
19 | 陈宇奇, 徐廷学, 郝建平, 等. 基于FDN的装备体系任务能力依赖性分析[J]. 系统工程与电子技术, 2021, 43(6): 1721-1728. |
Chen Yuqi, Xu Tingxue, Hao Jianping, et al. Task Capability Dependency Analysis of Weapon System of Systems Based on FDN[J]. Systems Engineering and Electronics, 2021, 43(6): 1721-1728. | |
20 | Delaurentis D, Marais K, Davendralingam N, et al. Increasing Robustness and Resilience: Assessing Disruptions and Dependencies in Analysis of System-of-Systems Alternatives[C]//Proceedings of the 16th Annual Information Security Symposium. West Lafayette: CERIAS - Purdue University, 2015: 38. |
21 | 王哲, 李建华, 刘子杨, 等. 基于功能依赖的网络信息体系建模及重心分析[J]. 系统工程与电子技术, 2021, 43(10): 2876-2883. |
Wang Zhe, Li Jianhua, Liu Ziyang, et al. Modeling and Center of Gravity Analysis for Networked Information System of Systems Based on Function Dependency[J]. Systems Engineering and Electronics, 2021, 43(10): 2876-2883. | |
22 | Xu Tingxue, Chen Yuqi, Lu Cheng, et al. Importance Measure of Equipment Task Based on Operational Dependency of SoS[J]. IEEE Access, 2021, 9: 15452-15466. |
23 | Zhang Wangxun, Li Zhifei, Wang Weiping, et al. System of Systems Safety Analysis of GNSS Based on Functional Dependency Network Analysis[J]. Applied Mathematics & Information Sciences, 2016, 10(6): 2227-2235. |
24 | 张旺勋, 李群, 侯洪涛, 等. 卫星导航系统的体系安全性分析方法[J]. 国防科技大学学报, 2015, 37(2): 92-98. |
Zhang Wangxun, Li Qun, Hou Hongtao, et al. System of Systems Safety Analysis Method for GNSS[J]. Journal of National University of Defense Technology, 2015, 37(2): 92-98. | |
25 | Guariniello C, DeLaurentis D. Supporting Design via the System Operational Dependency Analysis Methodology[J]. Research in Engineering Design, 2017, 28(1): 53-69. |
26 | 张旺勋. 基于复杂交互网络的武器装备体系安全性分析方法[D]. 长沙: 国防科学技术大学, 2015. |
Zhang Wangxun. A Weapon System of Systems Safety Analysis Method Based on Complex Interaction Networks[D]. Changsha: National University of Defense Technology, 2015. | |
27 | Servi L D, Garvey P R. Deriving Global Criticality Conditions from Local Dependencies Using Functional Dependency Network Analysis (FDNA)[J]. Systems Engineering, 2017, 20(4): 297-306. |
28 | 邱禄芸, 方志耕, 陶良彦, 等. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737. |
Qiu Luyun, Fang Zhigeng, Tao Liangyan, et al. Effectiveness Evaluation of Network SoS Based on Improved FDNA Model[J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. | |
29 | 张昱. 武器装备体系仿真试验床方法与关键技术研究[D]. 北京: 国防大学, 2013. |
Zhang Yu. Research and Key Technologies on Methodology of Weaponry and Equipment System Simulation Testbed[D]. Beijing: University of Defense, 2013. | |
30 | 马心意, 叶雄兵, 高广渊. 作战实验数据因果关系网络化建模方法研究[J]. 军事运筹与系统工程, 2022, 36(1): 33-40. |
Ma Xinyi, Ye Xiongbing, Gao Guangyuan. A Network Modeling Method of Warfighting Experiment Data Causal Analysis[J]. Military Operations Research and Systems Engineering, 2022, 36(1): 33-40. | |
31 | 张传良, 丁浩淼. 从杀伤链到杀伤网-全域作战视角下的杀伤链战略[J]. 军事文摘, 2021(3): 7-12. |
32 | Qin Changjiang, Liang Yi, Huang Jincai, et al. Node Capability Dependency Importance Evaluation of Heterogeneous Target Operational Network[J]. Evolutionary Intelligence, 2024, 17(1): 283-290. |
33 | 吉景溪. 基于DoDAF-QFD-FDNA的作战体系贡献度评估[D]. 武汉: 华中科技大学, 2021. |
Ji Jingxi. DoDAF-QFD-FDNA Based Combat System of Systems Contribution Degree Evaluation[D]. Wuhan: Huazhong University of Science & Technology, 2021. |
[1] | Huang Jie, Huang Jie. An Intelligent Tracking Control Method for Unmanned Vehicles with Time-varying Disturbances [J]. Journal of System Simulation, 2025, 37(4): 1063-1075. |
[2] | Xu Ming, Li Jinye, Zuo Dongyu, Zhang Jing. Signal Timing Optimization via Reinforcement Learning with Traffic Flow Prediction [J]. Journal of System Simulation, 2025, 37(4): 1051-1062. |
[3] | Zhang Xingyu, Wu Baolei, Wang Jun, Hong Miaoying, Wang Jiahui, Qi Yongqiang. Research on Dual-layer Path Planning Method for Lunar Rover Based on Slip Prediction [J]. Journal of System Simulation, 2025, 37(4): 1008-1024. |
[4] | Wan Shizheng, Cheng Yu, Zhang Xu, Fan Xuwei. Enhancement of Hardware-in-loop Simulation Ability for Homing Guidance Through Adaptive Field-of-view Method [J]. Journal of System Simulation, 2025, 37(3): 563-570. |
[5] | Guo Bo, Tie Ming, Fan Wenhui. Vibration Simulation and Multivariate Statistical Analysis Method of Composite Structures [J]. Journal of System Simulation, 2025, 37(3): 571-583. |
[6] | Zhang Lei, Zhang Xuechao, Wang Chao, Bo Xianglei. An Intelligent Ambulance Regulation Model Based on Online Reinforcement Learning Algorithm [J]. Journal of System Simulation, 2025, 37(3): 584-594. |
[7] | Xu Ming, Qi Guangyao, Qi Geqi. Fine-grained Traffic Flow Inference Model Based on Dynamic Back Projection Network [J]. Journal of System Simulation, 2025, 37(3): 657-666. |
[8] | Lin Guijuan, Li Zihan, Wang Yu. Research on Improved A* Algorithm Path Planning Based on Global Key Point Extraction [J]. Journal of System Simulation, 2025, 37(3): 667-678. |
[9] | Li Ruoqing, Zhao Yaochi, Hu Zhuhua, Qi Wenlu, Liu Guangfeng. TOHF: A Feature Extractor for Resource-constrained Indoor VSLAM [J]. Journal of System Simulation, 2025, 37(3): 691-703. |
[10] | Cao Xi, Liu Bo, Su Bingzhi, Nie Tao. Design and Verification of Display and Control System Based on MBSE and VAPS for Civil Helicopter [J]. Journal of System Simulation, 2025, 37(3): 704-717. |
[11] | Chen Xue, Cao Jianwen. CAE Simulation Optimization Method Based on Dynamic Coupling Model [J]. Journal of System Simulation, 2025, 37(3): 718-731. |
[12] | Chen Shuo, Hu Hao, Fang Huimin, Wang Haiwei, Chen Xiaolong, Mei Chengcheng, Zhu Jiaʹnan, Ai Qian. Electric Vehicle Dispatching Strategy and Incentive Evaluation Based on Virtual Energy Storage [J]. Journal of System Simulation, 2025, 37(3): 732-741. |
[13] | Bai Yuxin, Chen Zhenya, Shi Ruitao, Su Weitao, Ma Zhuoqiang, Yang Shangjin. Research on Robot Path Planning Based on Improved Harris Hawks Algorithm [J]. Journal of System Simulation, 2025, 37(3): 742-752. |
[14] | Zhang Bin, Lei Yonglin, Li Qun, Gao Yuan, Chen Yong, Zhu Jiajun, Bao Chenlong. Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation [J]. Journal of System Simulation, 2025, 37(3): 763-774. |
[15] | Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning [J]. Journal of System Simulation, 2025, 37(3): 791-802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||