[1] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151. Gong Yingfei, Lu Zongxiang, Qiao Ying, et al.An Review of Photovoltaic Energy System Output Forecasting Technology[J]. Automation of Electric Power Systems, 2016, 40(4): 140-151. [2] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. Ding Ming, Wang Weisheng, Wang Xiuli, et al.A Review on the Effect of Large-scale PV Generation on Power Systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14 [3] 杨国清, 张凯, 王德意, 等. 基于包络线聚类的多模融合超短期光伏功率预测算法[J]. 电力自动化设备, 2021, 1(2): 1-8. Yang Guoqing, Zhang Kai, Wang Deyi, et al.Multi-mode Fusion Ultra-short-term Photovoltaic Power Prediction Algorithm Based on Envelop Clustering[J]. Electric Power Automation Equipment, 2021, 1(2): 1-8. [4] 许彪, 徐青山, 黄煜, 等. 基于藤copula分位数回归的光伏功率日前概率预测[J]. 电网技术2021, 1(1): 1-13. Xu Biao, Xu Qingshan, Huang Yu, et al.Prediction of PV Power Day-ahead Probability Based on Vine Copula Quantile Regression[J]. Power Grid Technology, 2021, 1(1): 1-13 [5] Antonanzas J, Osorio N, Escobar R, et al.Review of Photovoltaic Power Forecasting[J]. Solar Energy (S0038-092X), 2018, 136(5): 78-111. [6] 程泽, 李思宇, 韩丽洁, 等. 基于数据挖掘的光伏阵列发电预测方法研究[J]. 太阳能学报, 2017, 38(3): 726-733. Cheng Ze, Li Siyu, Han Lijie, et al.Research on the Prediction Method of Photovoltaic Array Power Generation based on Data Mining[J]. Journal of Solar Energy, 2017, 38(3): 726-733. [7] Dolara A, Grimaccia F, Leva S, et al.Aphysicalhy Brid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output[J]. Energies (S1996-1073), 2015, 8(2): 1138-1153. [8] Widodo A, Shim M, Caesarendra W, et al.Intelligent Prognostics for Battery Health Monitoring based on Sample Entropy[J]. Expert System With Applications (S0957-4174), 2011, 38(9): 11763-11769. [9] 张彩庆, 郑强. SKBA-LSSVM短期光伏发电功率预测模型[J]. 电力系统及其自动化学报, 2019, 31(8): 86-93. Zhang Caiqing, Zheng Qiang.Short-term PV Power Prediction Model of SKBA-LSSVM[J]. Journal of Power Systems and Automation, 2019, 31(8): 86-93 [10] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926. Wang Su, Jiang Xing, Zeng Liang, et al.Prediction of Ultra-short Term Photovoltaic Power based on VMD-DESN-MSGP Model[J]. Power Grid Technology, 2020, 44(3): 917-926. [11] Chen C, Duan S, Cai T, et al.Online24-hsolar Power Forecasting based on Weather Type Classification Using Artificial Neural Network[J]. Solar Energy (S0038-092X), 2011, 85(11): 2856-2870. [12] Mora-lopez L, Martinez-marchena I, Ppiliougine M, et al. Machine Learning Approach for Next Day Energy Production Forecasting Rid Connected Photovoltaic Plants[J]. Environmental Modelling and Software, 2005, 20(6):753-760. [13] Shi J, Lee W J, Liu Y, et al. Forecasting Power Output of Photovoltaic System based on Weather Classification and Support Vector Machine[J]. IEEE Transactions on Industry Applications.2012.48(3):1064-1-69. [14] 张金金, 张倩, 马愿, 等. 基于改进的随机森林和密度聚类的短期负荷频域预测方法[J]. 控制理论与应用, 2020, 37(10): 2257-2265. Zhang Jinjin, Zhang Qian, Ma Yuan, et al.Short-term Load Frequency Domain Forecasting Method based on Improved Random Forest and Density Clustering[J]. Control Theory and Applications, 2020, 37(10): 2257-2265. [15] Daubechies I, Lu J, Wu H T.Synchrosqueezed Wavelet Transforms: An Empirical Mode Decomposition-like Tool[J]. Applied and Computational Harmonic Analysis (S1063-5203), 2011, 30(2): 243-261. [16] Daubechies I.Ten Lectures on Wavelets[J].USA: Society for Industrial and Applied Mathematics (S0916-7005), 1992, 21(5): 126-134. [17] Breiman L.Random Forests[M]. Statistics Department. University of California: Machine Learning, 2001. [18] Everitt B S.Classification and Regression Trees[M] Encyclopedia of Statistics in Behavioral Science. Cornell University, USA: John Wiley & Sons, Ltd, 2005. [19] 梁彩霞, 高赵亮. 基于相似日和GA-DBN神经网络的光伏发电短期功率预测[J]. 电气应用, 2019, 38(3): 97-102. Liang Caixia, Gao Zhaoliang.Short-term Power Prediction of Photovoltaic Power Generation based on Similar Days and GA-DBN Neural Network[J]. Electrical Application, 2019, 38(3): 97-102. |