Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (4): 760-772.doi: 10.16182/j.issn1004731x.joss.21-1304
• Papers • Previous Articles
Wei Chen(), Yan Wang(
), Zhicheng Ji
Received:
2021-12-16
Revised:
2022-02-27
Online:
2023-04-29
Published:
2023-04-12
Contact:
Yan Wang
E-mail:chanvey2218@qq.com;wangyan88@jiangnan.edu.cn
CLC Number:
Wei Chen, Yan Wang, Zhicheng Ji. Dynamics Modeling and Online Prediction of Energy Consumption of Discrete Manufacturing System[J]. Journal of System Simulation, 2023, 35(4): 760-772.
Table 2
Algorithm test results when N2=1
数据集 | ELM | OSELM | IOSELM | BI-IOSELM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | t/s | RMSE | t/s | RMSE | t/s | RMSE | t/s | |||||
Energy Efficiency | 0.887 | 3.052 | 3.641 | 0.891 | 3.065 | 0.188 | 0.891 | 3.016 | 0.250 | 0.923 | 2.664 | 0.266 |
Real Estate Valuation | 0.504 | 7.929 | 1.516 | 0.501 | 7.854 | 0.163 | 0.571 | 7.454 | 0.188 | 0.637 | 7.113 | 0.227 |
Air Quality | 0.957 | 67.998 | 340.980 | 0.949 | 66.619 | 1.297 | 0.900 | 66.139 | 1.318 | 0.961 | 63.845 | 2.406 |
Yacht Hydrodynamics | 0.741 | 5.114 | 0.984 | 0.721 | 8.175 | 0.125 | 0.658 | 7.630 | 0.141 | 0.766 | 4.914 | 0.198 |
SkillCraft1 Master Table | 0.974 | 9.951 | 40.875 | 0.942 | 9.744 | 0.500 | 0.838 | 8.592 | 0.503 | 0.986 | 7.283 | 0.641 |
Table 3
Algorithm test results when N2=2
数据集 | ELM | OSELM | IOSELM | BI-IOSELM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | t/s | RMSE | t/s | RMSE | t/s | RMSE | t/s | |||||
Energy Efficiency | 0.885 | 3.050 | 1.984 | 0.876 | 3.152 | 0.250 | 0.880 | 3.116 | 0.266 | 0.916 | 2.653 | 0.322 |
Real Estate Valuation | 0.541 | 7.620 | 0.766 | 0.466 | 8.032 | 0.234 | 0.592 | 7.326 | 0.250 | 0.645 | 6.965 | 0.297 |
Air Quality | 0.954 | 68.951 | 184.200 | 0.953 | 70.112 | 1.313 | 0.937 | 69.312 | 1.516 | 0.962 | 63.085 | 3.469 |
Yacht Hydrodynamics | 0.738 | 6.896 | 0.547 | 0.632 | 7.830 | 0.141 | 0.641 | 7.758 | 0.172 | 0.826 | 5.838 | 0.188 |
SkillCraft1 Master Table | 0.961 | 10.864 | 24.750 | 0.954 | 10.588 | 0.281 | 0.907 | 12.495 | 0.297 | 0.971 | 8.711 | 0.516 |
Table 4
Algorithm test results when N2=3
数据集 | ELM | OSELM | IOSELM | BI-IOSELM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | t/s | RMSE | t/s | RMSE | t/s | RMSE | t/s | |||||
Energy Efficiency | 0.889 | 3.000 | 1.594 | 0.876 | 3.157 | 0.219 | 0.882 | 3.094 | 0.234 | 0.902 | 2.835 | 0.313 |
Real Estate Valuation | 0.520 | 7.321 | 0.578 | 0.517 | 7.767 | 0.203 | 0.281 | 7.271 | 0.225 | 0.638 | 7.018 | 0.291 |
Air Quality | 0.956 | 67.393 | 122.530 | 0.952 | 69.556 | 0.329 | 0.953 | 69.225 | 0.391 | 0.960 | 64.476 | 2.984 |
Yacht Hydrodynamics | 0.786 | 6.363 | 0.453 | 0.547 | 8.419 | 0.115 | 0.632 | 7.830 | 0.121 | 0.805 | 6.114 | 0.126 |
SkillCraft1 Master Table | 0.964 | 9.652 | 15.844 | 0.968 | 9.217 | 0.219 | 0.892 | 10.038 | 0.328 | 0.969 | 9.069 | 0.507 |
Table 8
Forecast result
测试算法 | 测试数据1 | 测试数据2 | 测试数据3 | 测试数据4 | ||||
---|---|---|---|---|---|---|---|---|
预测值 | 误差/% | 预测值 | 误差/% | 预测值 | 误差/% | 预测值 | 误差/% | |
DE-SVR | 3 593.5 | 2.56 | 3 868.9 | 5.06 | 2 226.7 | 3.72 | 2 758.8 | 4.55 |
BPNN | 3 280.3 | 6.38 | 3 820.3 | 6.25 | 2 272.0 | 1.76 | 3 156.0 | 19.60 |
CART | 4 666.7 | 33.18 | 4 666.7 | 14.52 | 2 135.2 | 7.68 | 3 266.5 | 23.79 |
ELM | 3 598.6 | 2.71 | 4 099.5 | 0.60 | 2 296.4 | 0.70 | 2 513.6 | 4.74 |
OSELM | 2 859.1 | 18.40 | 3 317.2 | 18.59 | 2 691.0 | 16.35 | 3 158.6 | 19.70 |
IOSELM | 3 057.7 | 12.73 | 4 147.6 | 1.78 | 2 691.9 | 16.40 | 3 055.3 | 15.78 |
BI-IOSELM | 3 541.1 | 1.06 | 4 058.3 | 0.41 | 2 328.1 | 0.67 | 2 632.4 | 0.24 |
1 | Cai W, Liu F, Zhou X N, et al. Fine Energy Consumption Allowance of Workpieces in the Mechanical Manufacturing Industry[J]. Energy(S0360-5442), 2016, 114: 623-633. |
2 | 尚振东. 重型数控铣镗床能耗特性及能效评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Shang Zhendong. Research on Characteristics and Performance Evaluation of Energy Consumption of Heavy-duty CNC Milling and Boring Machine Tools[D]. Harbin: Harbin Institute of Technology, 2019. | |
3 | Li L, Yan J H, Xing Z W. Energy Requirements Evaluation of Milling Machines Based on Thermal Equilibrium and Empirical Modelling[J]. Journal of Cleaner Production(S0959-6526), 2013, 52: 113-121. |
4 | Asrai R I, Newman S T, Nassehi A. A Mechanistic Model of Energy Consumption in Milling[J]. International Journal of Production Research(S1366-588X), 2018, 56(1/2): 642-659. |
5 | He Y, Wu P C, Wang Y L, et al. An OPC UA Based Framework for Predicting Energy Consumption of Machine Tools[J]. Procedia CIRP(S2212-8271), 2020, 90: 568-572. |
6 | 李聪波, 尹誉先, 肖溱鸽, 等. 数据驱动下基于元动作的数控车削能耗预测方法[J]. 中国机械工程, 2020, 31(21): 2601-2611. |
Li Congbo, Yin Yuxian, Xiao Qinge, et al. Data-driven Energy Consumption Prediction Method of CNC Turning Based on Meta-action[J]. China Mechanical Engineering, 2020, 31(21): 2601-2611. | |
7 | Lü L S, Deng Z H, Yan C, et al. Modelling and Analysis for Processing Energy Consumption of Mechanism and Data Integrated Machine Tool[J]. International Journal of Production Research(S0020-7543), 2020, 58(23): 7078-7093. |
8 | Kant G, Sangwan K S. Predictive Modelling for Energy Consumption in Machining Using Artificial Neural Network[J]. Procedia CIRP(S2212-8271), 2015, 37: 205-210. |
9 | 林雨谷, 王艳. 离散车间能效数据挖掘及调度优化[J]. 系统仿真学报, 2019, 31(12): 2702-2711. |
Lin Yugu, Wang Yan. Energy Efficiency Data Mining and Scheduling Optimization of Dicsrete Workshop[J]. Journal of System Simulation, 2019, 31(12): 2702-2711. | |
10 | Zheng J, Zheng W, Chen A, et al. Sustainability of Unconventional Machining Industry Considering Impact Factors and Reduction Methods of Energy Consumption: A Review and Analysis[J]. Science of The Total Environment(S0048-9697), 2020, 722: 137897. |
11 | Liang N Y, Huang G B, Saratchandran P, et al. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks[J]. IEEE Transactions on Neural Networks(S1045-9227), 2006, 17(6): 1411-1423. |
12 | Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing(S0925-2312), 2006, 70(1): 489-501. |
13 | Alaba P A, Popoola S I, Olatomiwa L, et al. Towards a More Efficient and Cost-sensitive Extreme Learning Machine: A State-of-the-art Review of Recent Trend[J]. Neurocomputing(S0925-2312), 2019, 350: 70-90. |
14 | Huang G B, Chen L, Siew C K. Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes[J]. IEEE Transactions on Neural Network(S1941-0093), 2006, 17(4): 879-892. |
15 | Vershynin R. High Dimensional Probability: An Introduction with Applications in Data Science[M]. Cambridge: Cambridge University Press, 2018: 37-39. |
16 | Tian H X, Qin P L. State of Health Prediction for Lithium-ion Batteries with a Novel Online Sequential Extreme Learning Machine Method[J]. International Journal of Energy Research(S1099-114X), 2021, 45(2): 2383-2397. |
17 | 田慧欣, 秦鹏亮, 李坤, 等. 基于HI-DD-AdaBoost.RT的锂离子动力电池SOH预测[J]. 控制与决策, 2021, 36(3): 686-692. |
Tian Huixin, Qin Pengliang, Li Kun, et al. Prediction of Li-ion Battery SOH Based on HI-DD-AdaBoost.RT[J]. Control and Decision, 2021, 36(3): 686-692. | |
18 | 徐敬通, 李涛, 陈俊超, 等. 数控机床的能耗模型及实验研究[J]. 中南大学学报(自然科学版), 2017, 48(8): 2024-2033. |
Xu Jingtong, Li Tao, Chen Junchao, et al. An Energy Consumption Model and Experimental Research of Numerical Control Machine Tools[J]. Journal of Central South University(Science and Technology), 2017, 48(8): 2024-2033. | |
19 | 岳彩旭, 刘鑫, 姜男, 等. 硬态切削过程建模技术研究发展[J]. 系统仿真学报, 2020, 32(6): 982-999. |
Yue Caixu, Liu Xin, Jiang Nan, et al. Research on Modeling Technology for Hard Cutting Process[J]. Journal of System Simulation, 2020, 32(6): 982-999. | |
20 | 周志恒. 数控车床切削过程能耗预测建模及参数优化[D]. 武汉: 华中科技大学, 2016. |
Zhou Zhiheng. Research on Modeling and Parameter Optimization of Cutting Process Energy Consumption in NC Lathe[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
21 | Hamdi T, Ali J B, Costanzo V D, et al. Accurate Prediction of Continuous Blood Glucose Based on Support Vector Regression and Differential Evolution Algorithm[J]. Biocybernetics and Biomedical Engineering(S0208-5216), 2018, 38(2): 362-372. |
22 | Li J S, Yao X W, Xu K L. A Comprehensive Model Integrating BP Neural Network and RSM for the Prediction and Optimization of Syngas Quality[J]. Biomass and Bioenergy(S0961-9534), 2021, 155: 106278. |
23 | Ji Y, Xu P, Chen J Y. An Hourly Electricity Consumption Calculation Method for Hvac Terminal Units with Classification and Regression Tree on the Basis of Sub-metering[J]. IOP Conference Series Earth and Environmental Science(S1755-1315), 2019, 238(1): 012002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||