Journal of System Simulation ›› 2021, Vol. 33 ›› Issue (2): 249-261.doi: 10.16182/j.issn1004731x.joss.20-0936
Previous Articles Next Articles
Hu Yue, Xu Kai*, Qin Long, Yin Quanjun, Zha Yabing
Received:
2020-11-28
Revised:
2020-12-15
Online:
2021-02-18
Published:
2021-02-20
CLC Number:
Hu Yue, Xu Kai, Qin Long, Yin Quanjun, Zha Yabing. Spatio-Temporal Memory Models in Spatial Cognitive Behavioral Modeling[J]. Journal of System Simulation, 2021, 33(2): 249-261.
[1] Hart R A, Moore G T.The Development of Spatial Cognition: A review[M]. New Jersey, USA: Aldine Transaction, 1973. [2] 尹全军. 基于多Agent 的计算机生成兵力建模与仿真 [D]. 长沙: 国防科技大学, 2005. Yin Quanjun.Modeling and Simulation of Computer-Generated Forces based on Multiagent[D]. Changsha: National University of Defense Technology, 2005. [3] 秦龙. 面向CGF 的战场空间表示及推理关键技术研究[D]. 长沙: 国防科学技术大学, 2014. Qin Long.Research on Key Technologies of Battlefield Spatial Representation and Reasoning of CGFs[D]. Changsha: National University of Defense Technology, 2014. [4] Tolman E C.Cognitive Maps in Rats and Men[J]. Psychological Review (S0033-295X), 1948, 55(4): 189. [5] Atkinson R C, Shiffrin R M.Human Memory: A Proposed System and its Control Processes[J]. Psychology of Learning and Motivation (S0079-7421). 1968, 2(4): 89-195. [6] Baddeley A.Working memory[J]. Science (S1095-9203), 1992, 255(5044): 556-559. [7] Baddeley A.The Episodic Buffer: a New Component of Working Memory?[J]. Trends in Cognitive Sciences (S1364-6613), 2000, 4(11): 417-423. [8] Cowan N.What are the Differences Between Long-term, Short-term, and Working Memory?[J]. Progress in Brain Research (S0079-6123), 2008, 169: 323-338. [9] Stickgold R.Sleep-dependent Memory Consolidation[J]. Nature (S0028-0836), 2005, 437(7063): 1272-1278. [10] Tulving E.Episodic Memory: From Mind to Brain[J]. Annual Review of Psychology (S0066-4308), 2002, 53(1): 1-25. [11] Wiggs C L, Weisberg J, Martin A.Neural Correlates of Semantic and Episodic Memory Retrieval[J]. Neuropsychologia (S0028-3932), 1998, 37(1): 103-118. [12] Cohen M D, Bacdayan P.Organizational Routines Are Stored as Procedural Memory: Evidence from a Laboratory Study[J]. Organization Science (S1047-7039), 1994, 5(4): 554-568. [13] Olton D S.Spatial Memory[J]. Scientific American (S0036-8733), 1977, 236(6): 82-99. [14] Olton D S, Paras B C.Spatial Memory and Hippocampal Function[J]. Neuropsychologia (S0028-3932), 1979, 17(6): 669-682. [15] Sadalla E K, Burroughs W J, Staplin L J.Reference Points in Spatial Cognition[J]. Journal of Experimental Psychology: Human Learning and Memory (S0096-1515), 1980, 6(5): 516. [16] Foo P, Warren W H, Duchon A, et al.Do Humans Integrate Routes into a Cognitive Map? Map-versus Landmark-based Navigation of Novel Shortcuts[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition (S0278-7393), 2005, 31(2): 195. [17] Deshmukh S S, Knierim J J.Influence of Local Objects on Hippocampal Representations: Landmark Vectors and Memory[J]. Hippocampus (S1050-9631), 2013, 23(4): 253-267. [18] O'keefe J, Nadel L. The Hippocampus as a Cognitive Map[M]. Oxford: Clarendon Press, 1978. [19] Hafting T, Fyhn M, Molden S, et al.Microstructure of a Spatial Map in the Entorhinal Cortex[J]. Nature (S0028-0836), 2005, 436(7052): 801. [20] Barry C, Lever C, Hayman R, et al.The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory[J]. Reviews in the Neurosciences (S0334-1763), 2006, 17(1/2): 71. [21] Gallistel C R.The Organization of Learning[M]. Cambridge, MA, USA: The MIT Press, 1990. [22] Collett T S, Graham P.Animal Navigation: Path Integration, Visual Landmarks and Cognitive Maps[J]. Current Biology (S0960-9822), 2004, 14(12): 475. [23] Foo P, Duchon A, Warren W H, et al.Humans do Not Switch Between Path Knowledge and Landmarks When Learning a New Environment[J]. Psychological Research (S0340-0727), 2007, 71(3): 240. [24] Epstein R A, Patai E Z, Julian J B, et al.The Cognitive Map in Humans: Spatial Navigation and Beyond[J]. Nature Neuroscience (S1097-6256), 2017, 20(11): 1504. [25] Eichenbaum H, Cohen N J.Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function?[J]. Neuron (S0896-6273), 2014, 83(4): 764-770. [26] Schiller D, Eichenbaum H, Buffalo E A, et al.Memory and Space: Towards an Understanding of the Cognitive Map[J]. Journal of Neuroscience (S0270-6474), 2015, 35(41): 13904-13911. [27] Eichenbaum H.The Role of the Hippocampus in Navigation is Memory[J]. Journal of Neurophysiology (S0022-3077), 2017, 117(4): 1785-1796. [28] Hochreiter S, Schmidhuber J.Long Short-term Memory[J]. Neural Computation (S0899-7667), 1997, 9(8): 1735. [29] Merity S, Keskar N S, Socher R.Regularizing and Optimizing LSTM Language Models[EB/OL]. [2020-11-10].https://arxiv.org/abs/1708.02182. [30] Rahmatizadeh R, Abolghasemi P, Behal A, et al.From Virtual Demonstration to Real-world Manipulation Using LSTM and MDN[EB/OL]. [2020-11-10].https://arxiv.org/abs/1603.03833. [31] Mirowski P, Pascanu R, Viola F, et al. Learning to Navigate in Complex Environments[EB/OL]. [2020-11-10]. http://arxiv.org/abs/1611.03673. [32] Graves A, Wayne G, Danihelka I. Neural Turing Machines[EB/OL]. [2020-11-10]. http://arxiv.org/abs/ 1410.5401. [33] Sukhbaatar S, Weston J, Fergus R.End-to-end Memory Networks[C]. Advances in Neural Information Processing Systems. Montreal, CAN: Neural Information Processing Systems Foundation, 2015: 2440-2448. [34] Gupta S, Davidson J, Levine S, et al.Cognitive Mapping and Planning for Visual Navigation[C]. IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 2616-2625. [35] Zhang J, Tai L, Boedecker J, et al. Neural SLAM: Learning to Explore with External Memory[EB/OL]. [2020-11-10]. http://arxiv.org/abs/1706.09520. [36] Gupta S, Fouhey D, Levine S, et al. Unifying Map and Landmark Based Representations for Visual Navigation [EB/OL]. [2020-11-10]. http://arxiv.org/abs/1712.08125. [37] Parisotto E, Salakhutdinov R. Neural Map: Structured Memory for Deep Reinforcement Learning[EB/OL]. [2020-11-10]. http://arxiv.org/abs/1702.08360. [38] Fang K, Toshev A, Fei-Fei L, et al.Scene Memory Transformer for Embodied Agents in Long-horizon Tasks[C]. IEEE Conference on Computer Vision and Pattern Recognition. CA, USA: IEEE, 2019: 538-547. [39] Oh J, Chockalingam V, Singh S, et al. Control of Memory, Active Perception, and Action in Minecraft [EB/OL]. [2020-11-10]. http://arxiv.org/abs/1605.09128. [40] Savinov N, Dosovitskiy A, Koltun V. Semi-parametric Topological Memory for Navigation[EB/OL]. [2020-11-10]. http://arxiv.org/abs/1803.00653. [41] Eysenbach B, Salakhutdinov R R, Levine S.Search on the Replay Buffer: Bridging Planning and Reinforcement Learning[C]. Advances in Neural Information Processing Systems. Vancouver CAN: Neural Information Processing Systems Foundation, 2019: 15246-15257. [42] Mueller S T, Shiffrin R M.REM II: A Model of the Developmental Co-evolution of Episodic Memory and Semantic Knowledge[C]. International conference on learning and development (ICDL). Indiana, USA: IEEE Computational Intelligence Society, 2006. [43] Nuxoll A M, Laird J E.Extending Cognitive Architecture with Episodic Memory[C]. AAAI. Vancouver, CAN: AAAI Press, 2007: 1560-1564. [44] Laird J E, Mohan S.A Case Study of Knowledge Integration Across Multiple Memories in SOAR[J]. Biologically Inspired Cognitive Architectures (S2212-683X), 2014, 1(8): 93-99. [45] Shastri L.Episodic Memory and Cortico-hippocampal Interactions[J]. Trends in Cognitive Sciences (S1364-6613), 2002, 6(4): 162-168. [46] Carpenter G A, Grossberg S.A Massively Parallel Architecture for a Self-organizing Neural Pattern Recognition Machine[J]. Computer Vision, Graphics, and Image Processing (S0734-189X), 1987, 37(1): 54-115. [47] Wang W, Subagdja B, Tan A H, et al.Neural Modeling of Episodic Memory: Encoding, Retrieval, and Forgetting[J]. IEEE Transactions on Neural Networks and Learning Systems (S2162-237X), 2012, 23(10): 1574-1586. [48] Chang P H, Tan A H.Encoding and Recall of Spatio-Temporal Episodic Memory in Real Time[C]. IJCAI. Melbourne, Australia: IJCAI, 2017: 1490-1496. [49] Collins A M, Quillian M R.Retrieval Time from Semantic Memory[J]. Journal of Verbal Learning and Verbal Behavior (S0022-5371), 1969, 8(2): 240-247. [50] Kosko B.Fuzzy Cognitive Maps[J]. International Journal of Man-machine Studies (S0020-7373), 1986, 24(1): 65-75. [51] Tung W L, Quek C. eFSM—A Novel Online Neural-fuzzy Semantic Memory Model[J]. IEEE Transactions on Neural Networks (S1045-9227), 2009, 21(1): 136-157. [52] Wang W, Tan A H, Teow L N.Semantic Memory Modeling and Memory Interaction in Learning Agents[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems (S2168-2216), 2016, 47(11): 2882-2895. [53] O’Reilly R C, Bhattacharyya R, Howard M D, et al. Complementary Learning Systems[J]. Cognitive Science (S1879-307X), 2014, 38(6): 1229-1248. [54] Sun R, Mathews R C.Implicit cognition, emotion, and meta-cognitive control[J]. Mind & Society (S1593-7879), 2012, 11(1): 107-119. [55] Sun R.Memory Systems Within a Cognitive Architecture[J]. New Ideas in Psychology (S0732-118X), 2012, 30(2): 227-240. [56] Brehmer B.The Dynamic OODA Loop: Amalgamating Boyd’s OODA Loop and the Cybernetic Approach to Command and Control[C]. 10th International Command and Control Research Technology Symposium. USA: Command and Control Research Program, 2005: 365-368. [57] Endsley M R.Toward a Theory of Situation Awareness in Dynamic Systems[J]. Human Factors (S0018-7208), 1995, 37(1): 32-64. [58] Hu Y, Harabor D, Qin L, et al.Improving the Combination of JPS and Geometric Containers[C]// The International Conference on Automated Planning and Scheduling (ICAPS-2019). CA, USA: AAAI Press, 2019. [59] Zeng J, Qin L, Hu Y, et al.Integrating a Path Planner and an Adaptive Motion Controller for Navigation in Dynamic Environments[J]. Applied Sciences (S2076-3417), 2019, 9(7): 1384. [60] Zeng J, Qin L, Hu Y, et al.Combining Subgoal Graphs with Reinforcement Learning to Build a Rational Pathfinder[J]. Applied Sciences (S2076-3417), 2019, 9(2): 323. [61] Qin L, Yin Q, Zha Y, et al.Dynamic Detection of Topological Information from Grid-based Generalized Voronoi Diagrams[J]. Mathematical Problems in Engineering (S1024-123X), 2013(10): 1-11. [62] Yin Q, Qin L, Liu X, et al.Incremental Construction of Generalized Voronoi Diagrams on Pointerless Quadtrees[J]. Mathematical Problems in Engineering (S1024-123X), 2014(1): 1-14. [63] Yin Q, Qin L, Peng Y, et al.Learning Real-time Search on C-space GVDs[J]. Frontiers of Computer Science (S2095-2228), 2017, 11(6): 1036-1049. [64] Hu C, Yin Q, Hu Y, et al.Speeding up FastMap for Pathfinding on Grid Maps[C]. ICMA. Tianjin: IEEE, 2019: 2501-2506. [65] Wang D, Qian X, Quek C, et al.An Interpretable Neural Fuzzy Inference System for Predictions of Underpricing in Initial Public Offerings[J]. Neurocomputing (S0925-2312), 2018, 319: 102-117. [66] Sun L, Jiao P, Xu K, et al.Modified Adversarial Hierarchical Task Network Planning in Real-time Strategy Games[J]. Applied Sciences (S2076-3417), 2017, 7(9): 872. [67] Yang W, Peng Y, Yin Q, et al.History-based Single Belief State Generation for Partially Observable Real-time Strategy Games[C]. 2018 Winter Simulation Conference (WSC). Gothenburg, Sweden: IEEE, 2018: 763-773. [68] Churchill D, Saffidine A, Buro M.Fast Heuristic Search for RTS Game Combat Scenarios[C]. Eighth Artificial Intelligence and Interactive Digital Entertainment Conference. Toronto, CAN: AAAI Press, 2012. [69] Churchill D, Buro M.Portfolio Greedy Search and Simulation for Large-scale Combat in StarCraft[C]. 2013 IEEE Conference on Computational Intelligence in Games (CIG). Niagara Falls, CAN: IEEE, 2013: 1-8. [70] Ontañón S, Mishra K, Sugandh N, et al.Case-based Planning and Execution for Real-time Strategy Games[C]. International Conference on Case-Based Reasoning. Belfast, UK: Springer, 2007: 164-178. |
[1] | He Xiaoyuan, Guo Shengming, Wu Lin, Li Dong, Xu Xiao, Li Li. Modeling Research of Cognition Behavior for Intelligent Wargaming [J]. Journal of System Simulation, 2021, 33(9): 2037-2047. |
[2] | Gao Ang, Dong Zhiming, Zhang Guohui, Liang Tao, Guo Qisheng. Research on Generation Technology of Computer Generated Force in LVC Training System [J]. Journal of System Simulation, 2021, 33(3): 745-752. |
[3] | Xu Kai, Zeng Junjie, Yang Weilong, Qin Long, Yin Quanjun. Overview of CGF-oriented Cognitive Architecture [J]. Journal of System Simulation, 2021, 33(2): 239-248. |
[4] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[5] | Zhang Qi, Zeng Junjie, Xu Kai, Qin Long, Yin Quanjun. Behavior Modeling for Computer Generated Forces Based on Machine Learning [J]. Journal of System Simulation, 2021, 33(2): 280-287. |
[6] | Tang Jianbing, Zhang Qi, Jiao Peng, Zha Yabing. Preliminary Research on Verification and Validation for CGF Behavioral Modeling [J]. Journal of System Simulation, 2021, 33(2): 288-294. |
[7] | Xu Kai, Zeng Yunxiu, Wu Wansen, Yin Quanjun, Zha Yabing. Research on CGF-oriented Intention Recognition Behavioral Modeling Framework [J]. Journal of System Simulation, 2021, 33(10): 2344-2355. |
[8] | Tao Jiuyang, Wu Lin, He Xiaoyuan, Rong Ming. Modeling and Simulation on Entities’ Belief in Cyberspace [J]. Journal of System Simulation, 2018, 30(9): 3255-3263. |
[9] | Tao Jiuyang, Wu Lin, Wang Chi, Chu Junda, Liao Ying, Zhu Feng. A Model for Battlefield Situation Change Rate Prediction Based on Deep Learning [J]. Journal of System Simulation, 2018, 30(3): 785-792. |
[10] | Kong Yisi, Hu Xiaofeng, Zhu Feng, Tao Jiuyang. Attention Mechanism in Battlefield Situation Awareness [J]. Journal of System Simulation, 2017, 29(10): 2233-2241. |
[11] | Li Xinlong, Xiang Mao. Modeling and Analysis of Command Control System Based on DEVS [J]. Journal of System Simulation, 2015, 27(8): 1708-1714. |
[12] | Sun Shaobin, Zhang Shinan, Dong Bo. Formation Cooperation of Computer Generated Forces Organization [J]. Journal of System Simulation, 2015, 27(11): 2670-2675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||