[1] 郭齐胜. 计算机生成兵力导论[M]. 北京: 国防工业出版社, 2006. Guo Qisheng.An Introduction of Computer Generated Forces[M]. Beijing: National Defence Industry Press, 2006. [2] 黄柯棣, 刘宝宏, 黄健, 等. 作战仿真技术综述[J]. 系统仿真学报, 2004, 16(9):1887-1895. Huang Kedi, Liu Baohong, Huang Jian, et al.A Survey of Military Simulation Technologies[J]. Journal of System Simulation, 2004, 16(9):1887-1895. [3] 张琪. 学习驱动的CGF决策行为建模方法研究[D]. 长沙: 国防科技大学, 2019. Zhang Qi.Learning Driven Behavior Modeling Methods for Decision Making of CGFs [D]. Changsha: National University of Defense Technology, 2019. [4] Toubman A, Poppinga G, Roessingh J J, et al.Modeling CGF Behavior with Machine Learning Techniques: Requirements and Future Directions[C]. 2015 Interservice/Industry Training, Simulation, and Education Conference. Orlando, USA: I/ITSEC, 2015: 2637-2647. [5] 高昂, 段莉, 张国辉, 等. 计算机生成兵力行为建模发展现状[J]. 计算机工程与应用, 2019, 55(19): 43-51. Gao Ang, Duan Li, Zhang Guohui, et al.Development Status of Computer Generated Force Behavior Modeling[J]. Computer Engineering and Applications, 2019, 55(19): 43-51. [6] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. Zhou Zhihua.Machine Learning[M]. Beijing: Tsinghua University Press, 2016. [7] Taylor A.Designing Controllers for Computer Generated Forces with Evolutionary Computing: Experiments in a Simple Synthetic Environment[R]. Ottawa Canada: DRDC, 2013. [8] Luotsinen L J, Kamrani F, Hammar P, et al.Evolved Creative Intelligence for Computer Generated Forces[C]. Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on. Budapest: IEEE, 2016: 003063-003070. [9] Ernest N D.Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles [D]. USA: Dissertations & Thesis - Gradworks, 2015. [10] 姚剑. 面向装备效能仿真的战术探索方法研究[D]. 长沙: 国防科技大学, 2018. Yao Jian.Study on Tactics Exploration Method for Equipment Effectiveness Simulation[D]. Changsha: National University of Defense Technology, 2018. [11] 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1): 86-100. Gao Yang, Chen Shifu, Lu Xin.Research on Reinforcement Learning Technology:A Review[J]. Automatica Sinica, 2004, 30(1):86-100. [12] Aihe D O, Gonzalez A J.Correcting Flawed Expert Knowledge Through Reinforcement Learning[J]. Expert Systems with Applications (S0957-4174), 2015, 42(17): 6457-6471. [13] Teng T H, Tan A H, Teow L N.Adaptive Computer Generated Forces for Simulator-based Training[J]. Expert Systems with Applications (S0957-4174), 2013, 40(18): 7341-7353. [14] Junges R, Klugl F.Modeling Agent Behavior Through Online Evolutionary and Reinforcement Learning[C]. Federated Conference on Computer Science and Information Systems. USA: IEEE, 2011: 643-650. [15] Spronck P, Ponsen M, Sprink Huizen-Kuyper I, et al. Adaptive Game AI with Dynamic Scripting[J]. Machine Learning (S0885-6125), 2006, 63(3): 217-248. [16] Toubman A.Calculated Moves: Generating Air Combat Behaviour[D]. Netherlands: Dissertations & Thesis, Leiden University, 2020. [17] Toubman A, Roessingh J J M, Spronck P, et al. Improving Air-to-Air Combat Behavior Through Transparent Machine Learning[C]. Interservice/Industry Training, Simulation, and Education Conference. Orlando, USA: I/ITSEC, 2014: 1-11. [18] Fernlund H K G, Gonzalez A J, Georgiopoulos M, et al. Learning Tactical Human Behavior Through Observation of Human Performance[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics (S1083-4419), 2006, 36(1): 128. [19] Argall B D, Chernova S, Veloso M, et al.A Survey of Robot Learning from Demonstration[J]. Robotics & Autonomous Systems (S0921-8890), 2009, 57(5): 469-483. [20] Moriarty C L, Gonzalez A J.Learning Human Behavior from Observation for Gaming Applications[C]. International Florida Artificial Intelligence Research Society Conference, May 19-21, 2009. Sanibel Island, Florida, USA: DBLP, 2009. [21] Johnson C L, Avelino J G.Learning Collaborative Team Behavior from Observation[J]. Expert Systems with Applications (S0957-4174), 2014, 41(5): 2316-2328. [22] Berthling-Hansen G, Morch E, Lovlid R A, et al.Automating Behavior Tree Generation for Simulating Troop Movements (Poster)[C]. 2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). USA: IEEE, 2018: 147-153. [23] Floyd M W.A General-Purpose Framework for Learning by Observation[D]. Ottawa, Ontario, Canada: University of Carleton, 2013. [24] Ontan S, Mishra K, Sugandh N, et al.Case-Based Planning and Execution for Real-Time Strategy Games[C]. International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development. UK: Springer-Verlag, 2007: 164-178. [25] Robertson G, Watson I.Building Behavior Trees from Observations in Real-time Strategy Games[C]. International Symposium on Innovations in Intelligent Systems and Applications. Madrid: IEEE, 2015: 1-7. [26] Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets[C]. NIPS. USA: MIT, 2014: 2672-2680. [27] Jonathan H, Stefano E.Generative adversarial Imitation Learning[C]. Advances in Neural Information Processing Systems. New York, NY: Curran Associates, 2016: 4565-4573. [28] Stein G, Gonzalez A J.Building High-Performing Human-Like Tactical Agents Through Observation and Experience[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B Cybernetics (S1083-4419), 2011, 41(3):792-804. [29] Luotsinen L J, Lovlid R A.Data-driven Behavior Modeling for Computer Generated Forces[C]. NATO Modeling and Simulation Group Symp. M&S Support to Operational Tasks including War-gaming, Logistics, Cyber Defence (MSG-133). Germany: NATO, 2015: 1-13. [30] Kamrani F, Luotsinen L J, Lovlid R A.Learning Objective Agent Behavior using a Data-driven Modeling Approach[C]. IEEE International Conference on Systems, Man, and Cybernetics. Budapest: IEEE, 2016: 002175-002181. [31] Petty M D.Benefits and Consequences of Automated Learning in Computer Generated Forces Systems[J]. Information & Security: An International Journal (S0861-5160), 2003, 12(1): 63-74. [32] Babak Toghiani-Rizi.Evaluation of Deep Learning Methods for Creating Synthetic Actors[D]. Netherlands: Dissertations & Thesis, 2017. [33] Oana-Maria Camburu.Explaining Deep Neural Networks[D]. Oxford, England: Dissertations & Thesis, University of Oxford, 2020. |