Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (3): 543-554.doi: 10.16182/j.issn1004731x.joss.20-0834
• Modeling Theory and Methodology • Previous Articles Next Articles
Guoliang Feng1(), Wei Lu1,2(), Jianhua Yang1,2
Received:
2020-10-30
Revised:
2021-01-09
Online:
2022-03-18
Published:
2022-03-22
Contact:
Wei Lu
E-mail:fengguoliang911@foxmail.com;luwei@dlut.edu.cn
CLC Number:
Guoliang Feng, Wei Lu, Jianhua Yang. Modeling Time Series Using Multi-Modality Fuzzy Cognitive Maps[J]. Journal of System Simulation, 2022, 34(3): 543-554.
Table 3
Forecast results
数据集 | 权重方法 | PICP | PINAW | CWC | RMSE |
---|---|---|---|---|---|
MG | 动态权重 | 0.912 5 | 0.147 2 | 0.201 1 | 0.026 5 |
模型权重 | 0.920 8 | 0.292 5 | 0.399 8 | 0.116 9 | |
平均权重 | 0.950 0 | 0.357 1 | 0.488 3 | 0.107 4 | |
汇率 | 动态权重 | 0.873 0 | 0.095 9 | 0.130 9 | 0.016 8 |
模型权重 | 1.000 0 | 0.662 2 | 0.905 8 | 0.176 2 | |
平均权重 | 1.000 0 | 0.673 6 | 0.921 4 | 0.203 1 | |
河流量 | 动态权重 | 0.867 6 | 0.068 5 | 0.093 4 | 0.760 0 |
模型权重 | 0.904 1 | 0.135 5 | 0.185 2 | 1.549 6 | |
平均权重 | 0.908 7 | 0.148 0 | 0.202 2 | 1.738 5 | |
风速 | 动态权重 | 0.870 1 | 0.128 1 | 0.174 8 | 0.762 6 |
模型权重 | 0.976 1 | 0.314 1 | 0.429 7 | 1.261 1 | |
平均权重 | 0.976 3 | 0.339 2 | 0.463 9 | 1.528 7 |
1 | Weigend Andreas S, Gerschenfeld Neil A. Time Series Prediction: Forecasting the Future and Understanding the Past[J]. International Journal of Forecasting (S0169-2070), 1994, 10(1): 463-466. |
2 | Lee Y S, Tong L I. Forecasting Time Series Using a Methodology Based on Autoregressive Integrated Moving Average and Genetic Programming[J]. Knowledge-Based Systems (S0950-7051), 2011, 24(1): 66-72. |
3 | Zhang G P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J]. Neurocomputing (S0925-2312), 2003, 50: 159-175. |
4 | Khashei M, Bijari M, Ardali G A R. Hybridization of Autoregressive Integrated Moving Average (ARIMA) with Probabilistic Neural Networks (PNNs)[J]. Computers & Industrial Engineering (S0360-8352), 2012, 63(1): 37-45. |
5 | Cao L J, Tay F E H. Support vector Machine with Adaptive Parameters in Financial Time Series Forecasting[J]. IEEE Transactions on Neural Networks (S1045-9227), 2003, 14(6): 1506-1518. |
6 | Chaâbane N. A Novel Auto-Regressive Fractionally Integrated Moving Average-Least-Squares Support Vector Machine Model for Electricity Spot Prices Prediction[J]. Journal of Applied Statistics (S0266-4763), 2014, 41(3): 635-651. |
7 | Guo H, Liu X, Sun Z. Multivariate Time Series Prediction Using a Hybridization of VARMA Models and Bayesian Networks[J]. Journal of Applied Statistics (S0266-4763), 2016, 43(16): 2897-2909. |
8 | Song Q, Chissom B S. Fuzzy Time Series and its Models[J]. Fuzzy Sets and Systems (S0165-0114), 1993, 54(3): 269-277. |
9 | Singh P. A Brief Review of Modeling Approaches Based on Fuzzy Time Series[J]. International Journal of Machine Learning and Cybernetics (S1868-8071), 2017, 8(2): 397-420. |
10 | Bose M, Mali K. Designing Fuzzy Time Series Forecasting Models: a Survey[J]. International Journal of Approximate Reasoning (S0888-613X), 2019, 111: 78-99. |
11 | Lu W, Chen X, Pedrycz W, et al. Using Interval Information Granules to Improve Forecasting in Fuzzy Time Series[J]. International Journal of Approximate Reasoning (S0888-613X), 2015, 57: 1-18. |
12 | Froelich W, Pedrycz W. Fuzzy Cognitive Maps in the Modeling of Granular Time Series[J]. Knowledge-Based Systems (S0950-7051), 2017, 115: 110-122. |
13 | Bargiela A, Pedrycz W. Toward a Theory of Granular Computing for Human-Centered Information Processing[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2008, 16(2): 320-330. |
14 | Pedrycz W. The Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing[J]. Journal of Information Processing Systems (S1976-913X), 2011, 7(3): 397-412. |
15 | Pedrycz W, Homenda W. Building the Fundamentals of Granular Computing: a Principle of Justifiable Granularity[J]. Applied Soft Computing (S1568-4946), 2013, 13(10): 4209-4218. |
16 | Papageorgiou E I, Salmeron J L. A Review of Fuzzy Cognitive Maps Research During the Last Decade[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2012, 21(1): 66-79. |
17 | Felix G, Nápoles G, Falcon R, et al. A Review on Methods and Software for Fuzzy Cognitive Maps[J]. Artificial Intelligence Review (S0269-2821), 2019, 52(3): 1707-1737. |
18 | Stach W, Kurgan L A, Pedrycz W. Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy Cognitive Maps[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2008, 16(1): 61-72. |
19 | Lu W, Yang J, Liu X, et al. The Modeling and Prediction of Time Series Based on Synergy of High-Order Fuzzy Cognitive Map and Fuzzy c-Means Clustering[J]. Knowledge-Based Systems (S0950-7051), 2014, 70: 242-255. |
20 | Pedrycz W, Jastrzebska A, Homenda W. Design of Fuzzy Cognitive Maps for modeling time series[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2016, 24(1): 120-130. |
21 | Salmeron J L, Froelich W. Dynamic Optimization of Fuzzy Cognitive Maps for Time Series Forecasting[J]. Knowledge-Based Systems (S0950-7051), 2016, 105: 29-37. |
22 | Froelich W, Pedrycz W. Fuzzy Cognitive Maps in the Modeling of Granular Time Series[J]. Knowledge-Based Systems (S0950-7051), 2017, 115: 110-122. |
23 | Felix G, N´apoles G, Falcon R, et al. A Review on Methods and Software for Fuzzy Cognitive Maps[J]. Artificial Intelligence Review (S0269-2821) , 2019(52): 1707-1737. |
24 | Zadeh L A. Toward a Theory of fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic[J]. Fuzzy Sets and Systems (S0165-0114), 1997, 90(2): 111-127. |
25 | Zadeh L A. Is There a Need for Fuzzy Logic?[J]. Information Sciences (S0020-0255), 2008, 178(13): 2751-2779. |
26 | Bargiela A, Pedrycz W. Toward a Theory of Granular Computing for Human-Centred Information Processing[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2008, 16(2):320-330. |
27 | Pedrycz W. Granular Computing for Data Analytics: A Manifesto of Human-Centric Computing[J]. IEEE/CAA Journal of Automatica Sinica (S2329-9266), 2018, 5(6): 1025-1034. |
28 | Pedrycz W, Vukovich G. Abstraction and Specialization of Information Granules[J]. IEEE Transactions on Systems, Man and Cybernetics - PartB: Cybernetics (S1083-4419), 2001, 31(1): 106-111. |
29 | Stach W, Kurgan L A, Pedrycz W. Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy Cognitive Maps[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2008, 16(1): 61-72. |
30 | Boyd S, Vandenberghe L. Convex Optimization[M]. London: Cambridge University Press, 2004. |
31 | Khosravi A, Nahavandi S, Creighton D. Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts[J]. IEEE Transactions on Sustainable Energy (S1949-3029), 2013, 4(3): 602-610. |
32 | Quan H, Srinivasan D, Khosravi A. Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals[J]. IEEE Transactions on Neural Networks and Learning Systems (S2162-237X), 2013, 25(2): 303-315. |
[1] | Han Beibei, Wei Yingmei, Fang Yujie, Wan Shanshan. Visual Analysis of Cross-domain Association of Time-series Data [J]. Journal of System Simulation, 2022, 34(1): 53-61. |
[2] | Liu Hao, Mao Hongxia, Xiao Zhihe, Liu Zheng. Simulation of Rocket Exhaust Plumes Recognition Based on Dynamic Time Warping [J]. Journal of System Simulation, 2022, 34(1): 126-133. |
[3] | Lu Xuepeng, Shang Jiao, Zhao Junhui, Lü Lulu, Zhou Li. Transmission Process Prediction of Novel Coronavirus Based on System Dynamics [J]. Journal of System Simulation, 2021, 33(7): 1713-1721. |
[4] | Feng Zhenjie, Fan Yu. Chaotic Time Series Prediction Based on Gaussian Processes Mixture [J]. Journal of System Simulation, 2019, 31(7): 1387-1396. |
[5] | Dong Xinghui, Ma Xiaoshuang, Cheng Youxing, Wang Shuai. Modeling and Simulation of Health Degradation Trend for Wind Turbine Bearing [J]. Journal of System Simulation, 2019, 31(1): 151-158. |
[6] | Sun Xin, Li Zhenhua, Dong Junyu, LuoXinyan, Yang Yuting. Complex Network Modeling and Visualization Analysis for Ocean Observation Data [J]. Journal of System Simulation, 2018, 30(7): 2445-2452. |
[7] | Tianyu Huang, Yunying Guo. Research of Nonlinear Time Series Prediction Method for Motion Capture [J]. Journal of System Simulation, 2018, 30(7): 2808-2815. |
[8] | Luo Wei. Combination Forecasting of Stock Index Time Series based on Cooperative Game Theory [J]. Journal of System Simulation, 2018, 30(6): 2086-2094. |
[9] | Liu Jingwei, Zhou Rui, Zhao Hui, Zhu Minling, Meng Xianghua, Zhang Yuhao. Simulation Research on Predictive Wavelet Neural Network Intelligent Control System [J]. Journal of System Simulation, 2018, 30(10): 3770-3780. |
[10] | Li Hui, Chen Hongqian, Yang Qianyu, Chen Yi. Real-time Visualization Method for Log Data Stream [J]. Journal of System Simulation, 2016, 28(9): 2133-2138. |
[11] | Wang Dingcheng, Cao Zhili, Chen Beijing, Ni Yujia. Multivariate Time Series Local Support Vector Regression Forecast Methods for Daily Temperature [J]. Journal of System Simulation, 2016, 28(3): 654-660. |
[12] | Zhen Yuangang, Chen Yi, Liu Ying, Liu Ruijun. Discontinuous Hierarchical Data Visualization Method Based on ThemeRiver Model [J]. Journal of System Simulation, 2015, 27(10): 2460-2466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||