系统仿真学报 ›› 2019, Vol. 31 ›› Issue (8): 1591-1604.doi: 10.16182/j.issn1004731x.joss.18-VR0731
刘畅1,2, 贾金原1, 陆一凡2, 张乾3, 赵磊4
收稿日期:2018-07-31
修回日期:2018-10-31
发布日期:2019-12-12
第一作者简介:刘畅(1983-),男,江西南昌,博士,研究方向为虚拟现实、计算机图形学。
基金资助:Liu Chang1,2, Jia Jinyuan1, Lu Yifan2, Zhang Qian3, Zhao Lei4
Received:2018-07-31
Revised:2018-10-31
Published:2019-12-12
摘要: 针对于网页虚拟现实环境下的动态光照,在协同式实时渲染系统的基础上提出了一套集预存储、调度及优化为一体的协同实时渲染机制。该机制协助渲染系统在云端构建了基于视点信息的八叉树预存储结构“光图树”以保存和组织光照渲染信息。借助“光图树”以及用户的输入行为,机制引入了基于热度信息的光图组调度算法以提升渲染系统的传输效率。Web3D应用的测试结果表明本机制不但能够高效梳理数以千记的全局光照贴图,而且可以协助协同式实时渲染系统对动态场景光照加速重建。
中图分类号:
刘畅,贾金原,陆一凡等 . 光图树:Web3D动态场景全局光照的协同实时渲染[J]. 系统仿真学报, 2019, 31(8): 1591-1604.
Liu Chang,Jia Jinyuan,Lu Yifan,et al . GI-Map Tree: Global Illumination Collaborative Real-Time Rendering in Web3D Dynamic Scene[J]. Journal of System Simulation, 2019, 31(8): 1591-1604.
| [1] Liu C, Ooi W T, Jia J, et al.Cloud Baking: Collaborative Scene Illumination for Dynamic Web3D Scenes[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (S1551-6857), 2018, 14(3S): 59. [2] Liu C, Jia J, Zhang Q, et al.Lightweight WebSIM Rendering Framework Based on Cloud-Baking[C]. Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. Singapore: ACM, 2017: 221-229. [3] Hu Q, Yu D, Wang S, et al.Hybrid three-dimensional representation based on panoramic images and three-dimensional models for a virtual museum: Data collection, model, and visualization[J]. Information Visualization(S1473-8716), 2017, 16(2): 126-138. [4] Shi S, Hsu C H.A survey of interactive remote rendering systems[J]. ACM Computing Surveys (S0360-0300), 2015, 47(4): 57. [5] Cai W, Shea R, Huang C Y, et al.A Survey on Cloud Gaming: Future of Computer Games[J]. IEEE Access (S2169-3536), 2016, 4: 7605-7620. [6] Chen Y, Liu E S.A path-assisted dead reckoning algorithm for distributed virtual environments[C]. IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). Cosenza, Italy: IEEE, 2015: 108-111. [7] Pharr M, Jakob W, Humphreys G.Physically based rendering: From theory to implementation[M]. London, UK: Morgan Kaufmann, 2016. [8] Guthe S, Schardt P, Goesele M, et al.Ghosting and popping detection for image-based rendering[C]. 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 2016. Hamburg, Germany: IEEE, 2016: 1-4. [9] Shi L, Huang F C, Lopes W, et al.Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics[J]. ACM Transactions on Graphics (S0730-0301), 2017, 36(6): 236. [10] Cohen M F, Szeliski R.Lumigraph[M]. Computer Vision. Boston, MA: Springer, 2014: 462-467. [11] Pujades S, Devernay F, Goldluecke B.Bayesian view synthesis and image-based rendering principles[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio: IEEE, 2014: 3906-3913. [12] Zhang Y X, Zhu Z Q, Ma P F.Walk through a Museum with Binocular Stereo Effect and Spherical Panorama Views[C]. Culture and Computing (Culture and Computing), 2017 International Conference. Kyoto, Japan: IEEE, 2017: 20-23. [13] Cao C, Wu H, Weng Y, et al.Real-time facial animation with image-based dynamic avatars[J]. ACM Transactions on Graphics (S0730-0301), 2016, 35(4): 126. [14] Jin J, Wang A, Zhao Y, et al.A fast region-level 3D-warping method for depth-image-based rendering[C]. Multimedia Signal Processing (MMSP), 2015 IEEE 17th International Workshop. Xiamen, China: IEEE, 2015: 1-6. [15] Daribo I, Saito H.A novel inpainting-based layered depth video for 3DTV[J]. IEEE Transactions on Broadcasting (S0018-9316), 2011, 57(2): 533-541. [16] Smolic A, Muller K, Dix K, et al.Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems[C]. 2008 15th IEEE International Conference on Image Processing (Icip 2008). San Diego, California: IEEE, 2008: 2448-2451. [17] Fehn C.Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV[C]. Stereoscopic Displays and Virtual Reality Systems XI. California, USA: SPIE, 2004, 5291: 93-105. [18] Shi S, Nahrstedt K, Campbell R.A real-time remote rendering system for interactive mobile graphics[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (S1551-6857), 2012, 8(3S): 46. [19] Zhu M, Morin G, Carville V, et al.Sprite tree: an efficient image-based representation for networked virtual environments[J]. The Visual Computer(S0178-2789), 2017, 33(11): 1385-1402. [20] Bao P, Gourlay D.Remote walkthrough over mobile networks using 3-D image warping and streaming[J]. IEE Proceedings-Vision, Image and Signal Processing (S1359-7108), 2004, 151(4): 329-336. [21] Xu H, Gossett N, Chen B.Knowledge and heuristic-based modeling of laser-scanned trees[J]. ACM Transactions on Graphics (S0730-0301), 2007, 26(4): 19. [22] Zhang Q L, Pang M Y.A survey of modeling and rendering trees[C]. International Conference on Technologies for E-Learning and Digital Entertainment. Berlin, Heidelberg: Springer, 2008: 757-764. [23] Zinner T, Hohlfeld O, Abboud O, et al.Impact of frame rate and resolution on objective QoE metrics[C]. The second international workshop on quality of multimedia experience (QoMEX) . Trondheim, Norway: IEEE, 2010: 29-34. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [8] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [9] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [10] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [11] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [12] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [13] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| [14] | 张志利, 刘瑾, 周召发, 梁哲, 张云昊. 基于ISCSO-BP神经网络模型的光纤陀螺温度补偿技术研究[J]. 系统仿真学报, 2025, 37(11): 2904-2917. |
| [15] | 陈际同, 周佳加, 吴迪, 江海龙. 基于TD3-RRT的特殊环境下USV路径规划算法研究[J]. 系统仿真学报, 2025, 37(11): 2888-2903. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||