系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1565-1573.doi: 10.16182/j.issn1004731x.joss.24-0222

• 论文 • 上一篇    

一种基于DRL的分布式装备体系优选方法

王子怡1, 张凯2, 钱殿伟1, 刘玉贞1   

  1. 1.华北电力大学 控制与计算机工程学院,北京 102206
    2.国能数智科技开发(北京)有限公司,北京 100011
  • 收稿日期:2024-03-11 修回日期:2024-05-09 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 张凯
  • 第一作者简介:王子怡(2000-),女,硕士生,研究方向为复杂系统分析与控制。
  • 基金资助:
    中央高校基本科研业务费(2018MS025)

A DRLbased Approach for Distributed Equipment Nodes Selection

Wang Ziyi1, Zhang Kai2, Qian Dianwei1, Liu Yuzhen1   

  1. 1.School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    2.CHN ENERGY Digital Intelligence Technology Development (Beijing) CO. , LTD, Beijing 100011, China
  • Received:2024-03-11 Revised:2024-05-09 Online:2025-06-20 Published:2025-06-18
  • Contact: Zhang Kai

摘要:

针对传统算法在大规模场景中求解速度不足且适应性较差的问题,基于DRL对大规模分布式装备体系优选问题进行智能化求解。根据分布式装备体系作战的特点,利用复杂网络对其进行图形式建模,并基于注意力机制对装备间的连边关系进行表征,构建分布式装备体系数字仿真环境。仿真结果表明:与遗传进化算法相比,该模型在求解时间、适应性等方面优势明显,有效提高了大规模分布式装备体系优选决策模型的性能。

关键词: DRL, 图神经网络, 注意力机制, 复杂网络, 分布式装备体系

Abstract:

Aiming at the problem of insufficient solution speed and poor generalization of traditional algorithms in large-scale scenarios, this paper intelligently solves the large-scale distributed equipment system preference problem based on deep reinforcement learning. According to the characteristics of distributed equipment system combat, using the complex network to its graph form modeling, and based on the attention mechanism to the equipment between the connecting edge relationship for the characterization, in order to build a distributed equipment system digital simulation environment. Simulation results show that compared with the genetic evolutionary algorithm, the obtained model has obvious advantages in terms of solution time and generalization, which effectively improves the performance of distributed equipment nodes combination selection.

Key words: DRL, graph neural network, attention mechanism, complex network, distributed system of equipment

中图分类号: