系统仿真学报 ›› 2025, Vol. 37 ›› Issue (5): 1116-1128.doi: 10.16182/j.issn1004731x.joss.24-0621

• 专栏:双碳目标下的新型能源与交通系统仿真技术 • 上一篇    下一篇

基于EMPC的含电动汽车综合能源系统分层优化调度

马苗苗1,2, 龙紫娟1, 任智伟1, 成永强1   

  1. 1.华北电力大学 控制与计算机工程学院,北京 102206
    2.华北电力大学 新能源电力系统全国重点实验室,北京 102206
  • 收稿日期:2024-06-11 修回日期:2024-08-19 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 成永强
  • 第一作者简介:马苗苗(1982-),女,教授,博士,博导,研究方向为模型预测控制、新能源电力系统优化与控制。
  • 基金资助:
    中央高校基本科研业务费专项资金(2023JC002);国家自然科学基金(61873091)

Hierarchical Optimal Scheduling of Integrated Energy System with Electric Vehicles Based on EMPC

Ma Miaomiao1,2, Long Zijuan1, Ren Zhiwei1, Cheng Yongqiang1   

  1. 1.School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    2.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • Received:2024-06-11 Revised:2024-08-19 Online:2025-05-20 Published:2025-05-23
  • Contact: Cheng Yongqiang

摘要:

针对含电动汽车的综合能源系统(integrated energy system,IES)需要考虑可再生能源和需求侧的随机性和不确定性的问题,设计了一种基于经济模型预测控制(economic model predictive control,EMPC)的分层实时优化调度策略(hierarchical real-time optimization strategy,HRTO),将整个系统的运行优化问题分为日前滚动优化,实时滚动优化和跟踪控制三个子问题。建立基于经济模型预测控制的日前优化策略,在保证经济性的同时确保启动的运行单元能够满足用户的需求,通过实时优化层优化整个IES的最优稳态操作点,设计跟踪模型预测控制器,跟踪上层传递的最优参考值。同时该策略通过引入电动汽车参与综合能源系统优化调度,充分发挥电动汽车的储能特性和灵活性,实现了电动汽车和各能源系统的协同优化。仿真分析表明,所提出的HRTO可以实现对电力负荷和建筑物温度设定点的跟踪。

关键词: 综合能源系统, 分层实时优化, 经济模型预测控制, 电动汽车, 滚动优化

Abstract:

A hierarchical real-time optimization (HRTO) based on economic model predictive control is designed to address the issues of randomness and uncertainty of renewable energy and demand-side in integrated energy systems (IES) with electric vehicles. The optimization problem of the entire system is divided into three sub-problems: day-ahead rolling optimization, real-time rolling optimization, and tracking control. The day-ahead optimization strategy based on economic model predictive control is constructed to ensure that the operational units can meet users' demands. The optimal steady-state operating points of the entire IES are obtained through the real-time optimization layer. The tracking model predictive controller is implemented to track the optimal reference values transmitted from the upper layer. This strategy introduces electric vehicles to participate in the optimization and scheduling of the IES, which can fully utilize the energy storage characteristics and flexibility of electric vehicles, thereby achieving the collaborative optimization between electric vehicles and various energy systems. Simulation and analysis results demonstrate that the proposed HRTO effectively tracks electric power loads and building temperature setpoints.

Key words: integrated energy system, hierarchical real-time optimization, economic model predictive control, electric vehicles, rolling optimization

中图分类号: