系统仿真学报 ›› 2023, Vol. 35 ›› Issue (5): 1059-1074.doi: 10.16182/j.issn1004731x.joss.22-0069
收稿日期:
2022-01-22
修回日期:
2022-03-21
出版日期:
2023-05-30
发布日期:
2023-05-22
通讯作者:
汪淑娟
E-mail:2873108580@qq.com;477963374@qq.com
作者简介:
罗慧诚(1995-),男,硕士生,研究方向为图像处理和车辆识别。E-mail:2873108580@qq.com
基金资助:
Huicheng Luo(), Shujuan Wang(
)
Received:
2022-01-22
Revised:
2022-03-21
Online:
2023-05-30
Published:
2023-05-22
Contact:
Shujuan Wang
E-mail:2873108580@qq.com;477963374@qq.com
摘要:
由于多摄像头下的视角变化、复杂环境和姿态差异等因素,同一辆车在不同场景下的图像表现出巨大的外观歧义性,为车辆的身份匹配带来了挑战。为解决这一难题,在transformer框架下提出了一种面向车辆识别的特征鲁棒性增强的方法。基于车辆结构信息是多个摄像头下域不变的信息,设计了一种轮廓特征引导增强结构信息的模块,并提出了一种结构特征感知损失来促进模型对结构信息的融合;通过将车辆的属性信息作为矢量嵌入到transformer框架中,进一步缓解多视角下车辆姿态改变带来的影响。实验结果表明,所提方法在数据集VeRi-776和VehicleID上均展现出对比同类方法的优越性与更好的识别效果。
中图分类号:
罗慧诚, 汪淑娟. 基于特征鲁棒性增强的多摄像头下车辆识别方法[J]. 系统仿真学报, 2023, 35(5): 1059-1074.
Huicheng Luo, Shujuan Wang. Multi-camera Vehicle Recognition Method Based on Feature Robustness Enhancement[J]. Journal of System Simulation, 2023, 35(5): 1059-1074.
表1
在VeRi-776数据集上的实验对比 (%)
方法 | rank-1 | rank-5 | mAP |
---|---|---|---|
PROVID | 81.56 | 95.11 | 53.42 |
SDC-CNN | 83.49 | 92.55 | 53.45 |
VAMI+STR | 85.92 | 91.84 | 61.32 |
DQAL | 88.50 | 94.41 | 60.01 |
QD-LDF | 88.50 | 94.46 | 61.83 |
AAVER | 88.97 | 94.70 | 61.18 |
SGAT | 89.69 | - | 65.66 |
VANet | 89.78 | 95.99 | 66.34 |
DMML | 91.20 | 96.30 | 70.10 |
MSV | 91.24 | - | 65.13 |
MRM | 91.77 | 95.82 | 68.55 |
PAMTRI | 92.86 | 96.97 | 71.88 |
SAN | 93.30 | 97.10 | 72.50 |
Part Regular | 94.30 | 98.70 | 74.30 |
SFF+SAtt+TBR | 94.93 | 97.85 | 74.11 |
CFVMNet | 95.30 | 98.40 | 77.06 |
App+Lic | 95.41 | 97.38 | 78.08 |
PVEN | 95.60 | 98.40 | 79.50 |
VOC-ReID | 96.30 | - | 79.70 |
SAVER | 96.40 | 98.60 | 79.60 |
Ours | 96.78 | 98.39 | 80.56 |
表2
在VehicleID数据集上的实验对比
方法 | Test-800 | Test-1600 | Test-2400 | |||
---|---|---|---|---|---|---|
rank-1 | mAP | rank-1 | mAP | rank-1 | mAP | |
SDC-CNN | 56.98 | 63.52 | 50.57 | 80.05 | 42.92 | 49.68 |
VAMI | 63.12 | - | 52.87 | 75.12 | 47.34 | - |
SFF+SAtt | 64.50 | - | 59.12 | 79.85 | 54.41 | - |
TAMR | 66.02 | 67.64 | 62.90 | - | 59.69 | 60.97 |
QD-DLF | 72.32 | 76.54 | 70.66 | 88.90 | 64.14 | 68.41 |
AAVER | 74.69 | - | 68.62 | 89.95 | 63.54 | - |
DQAL | 74.74 | - | 71.01 | 86.56 | 68.23 | - |
MSV | 75.10 | 79.30 | 71.80 | 86.1 | 68.70 | 73.30 |
EALN | 75.11 | 77.50 | 71.78 | 74.20 | 69.30 | 71.00 |
MRM | 76.64 | 80.02 | 74.20 | 77.32 | 70.86 | 74.02 |
SGAT | 78.12 | 81.49 | 73.98 | 77.46 | 71.87 | 75.35 |
SAN | 79.70 | - | 78.40 | - | 75.60 | - |
SAVER | 79.90 | - | 77.60 | - | 75.30 | - |
App+Lic | 79.50 | 82.70 | 76.90 | 79.90 | 74.80 | 77.70 |
CFVMNet | 81.40 | - | 77.30 | - | 74.70 | - |
Ours | 84.03 | 89.32 | 78.99 | 85.39 | 76.61 | 83.08 |
1 | Quispe R, Lan Cuiling, Zeng Wenjun, et al. AttributeNet: Attribute Enhanced Vehicle Re-identification[J]. Neurocomputing (S0925-2312), 2021, 465: 84-92. |
2 | Tang Zheng, Naphade M, Birchfield S, et al. PAMTRI: Pose-Aware Multi-task Learning for Vehicle Re-identification Using Highly Randomized Synthetic Data[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 211-220. |
3 | Chen T S, Liu C T, Wu C W, et al. Orientation-Aware Vehicle Re-identification with Semantics-Guided Part Attention Network[C]// Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part II. Heidelberg: Springer-Verlag, 2020: 330-346. |
4 | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]// International Conference on Learning Representations. New York, USA: ICLR, 2021. |
5 | Chen Jieneng, Lu Yongyi, Yu Qihang, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[EB/OL]. (2021-02-08)[2021-10-21]. . |
6 | Liu Xinchen, Liu Wu, Mei Tao, et al. A Deep Learning-Based Approach to Progressive Vehicle Re-identification for Urban Surveillance[C]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 869-884. |
7 | Liu Hongye, Tian Yonghong, Wang Yaowei, et al. Deep Relative Distance Learning: Tell the Difference between Similar Vehicles[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2167-2175. |
8 | Sobel I, Feldman G. A 3x3 Isotropic Gradient Operator for Image Processing[J]. A Talk at the Stanford Artificial Project in. Piscataway, USA: IEEE, 1968: 271-272. |
9 | Hermans A, Beyer L, Leibe B. In Defense of the Triplet Loss for Person Re-Identification[EB/OL]. (2017-11-21) [2021-10-21]. . |
10 | Lou Yihang, Bai Yan, Liu Jun, et al. VERI-Wild: A Large Dataset and a New Method for Vehicle Re-identification in the Wild[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 3230-3238. |
11 | Liu Xinchen, Liu Wu, Mei Tao, et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance[J]. IEEE Transactions on Multimedia (S1520-9210), 2018, 20(3): 645-658. |
12 | Zhu Jianqing, Zeng Huanqiang, Lei Zhen, et al. A Shortly and Densely Connected Convolutional Neural Network for Vehicle Re-Identification[C]// 2018 24th International Conference on Pattern Recognition (ICPR). Piscataway, NJ, USA: IEEE, 2018: 3285-3290. |
13 | Zhou Yi, Shao Ling. Viewpoint-Aware Attentive Multi-View Inference for Vehicle Re-Identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 6489-6498. |
14 | Hou Jinhui, Zeng Huanqiang, Zhu Jianqing, et al. Deep Quadruplet Appearance Learning for Vehicle Re-identification[J]. IEEE Transactions on Vehicular Technology (S0018-9545), 2019, 68(9): 8512-8522. |
15 | Zhu Yangchun, Zha Zhengjun, Zhang Tianzhu, et al. A Structured Graph Attention Network for Vehicle Re-Identification[C]// 28th ACM International Conference on Multimedia. New York, NY, USA: Association for Computing Machinery, 2020: 646-654. |
16 | Xu Yue, Jiang Na, Zhang Lei, et al. Multi-Scale Vehicle Re-identification Using Self-Adapting Label Smoothing Regularization[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ, USA: IEEE, 2019: 2117-2121. |
17 | Liu Hongye, Tian Yonghong, Wang Yaowei, et al. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2167-2175. |
18 | Liu Xinchen, Liu Wu, Mei Tao, et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance[J]. IEEE Transactions on Multimedia (S1520-9210), 2018, 20(3): 645-658. |
19 | Zhu Jianqing, Zeng Huanqiang, Huang Jingchang, et al. Vehicle Re-identification Using Quadruple Directional Deep Learning Features[J]. IEEE Transactions on Intelligent Transportation Systems (S1524-9050), 2020, 21(1): 410-420. |
20 | Khorramshahi P, Kumar A, Peri N, et al. A Dual-Path Model with Adaptive Attention for Vehicle Re-identification[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 6131-6140. |
21 | Chu Ruihang, Sun Yifan, Li Yadong, et al. Vehicle Re-identification With Viewpoint-Aware Metric Learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 8281-8290. |
22 | Chen Guangyi, Zhang Tianren, Lu Jiwen, et al. Deep Meta Metric Learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 9546-9555. |
23 | Peng Jinjia, Wang Huibing, Zhao Tongtong, et al. Learning Multi-region Features for Vehicle Re-identification with Context-Based Ranking Method[J]. Neurocomputing (S0925-2312), 2019, 359: 427-437. |
24 | Qian Jingjing, Jiang Wei, Luo Hao, et al. Stripe-Based and Attribute-Aware Network: a Two-Branch Deep Model for Vehicle Re-identification[J]. Measurement Science and Technology (S0957-0233), 2020, 31(9): 095401. |
25 | He Bing, Li Jia, Zhao Yifan, et al. Part-Regularized Near-Duplicate Vehicle Re-identification[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 3992-4000. |
26 | Liu Chenghuan, Huynh D Q, Reynolds M. Urban Area Vehicle Re-Identification with Self-Attention Stair Feature Fusion and Temporal Bayesian Re-Ranking[C]// 2019 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ, USA: IEEE, 2019: 1-8. |
27 | Sun Ziruo, Nie Xiushan, Xi Xiaoming, et al. CFVMNet: A Multi-Branch Network for Vehicle Re-identification Based on Common Field of View[C]// 28th ACM International Conference on Multimedia. New York, NY, USA: Association for Computing Machinery, 2020: 3523-3531. |
28 | He Yanguang, Dong Chenhe, Wei Ying. Combination of Appearance and License Plate Features for Vehicle Re-identification[C]// 2019 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2019: 3108-3112. |
29 | Meng Dechao, Li Liang, Liu Xuejing, et al. Parsing-Based View-Aware Embedding Network for Vehicle Re-identification[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 7101-7110. |
30 | Zhu Xiangyu, Luo Zhenbo, Fu Pei, et al. VOC-RelD: Vehicle Re-identification based on Vehicle-Orientation-Camera[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, NJ, USA: IEEE, 2020: 2566-2573. |
31 | Khorramshahi P, Peri N, Chen Juncheng, et al. The Devil is in the Details: Self-Supervised Attention for Vehicle Re-identification[C]// Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 369-386. |
32 | Guo Haiyun, Zhu Kuan, Tang Ming, et al. Two-Level Attention Network with Multi-grain Ranking Loss for Vehicle Re-identification[J]. IEEE Transactions on Image Processing (S1057-7149), 2019, 28(9): 4328-4338. |
33 | Lou Yihang, Bai Yan, Liu Jun, et al. Embedding Adversarial Learning for Vehicle Re-identification[J]. IEEE Transactions on Image Processing (S1057-7149), 2019, 28(8): 3794-3807. |
34 | Abnar S, Zuidema W. Quantifying Attention Flow in Transformers[C]// 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2020: 4190-4197. |
35 | 李熙莹, 周智豪, 邱铭凯. 基于部件融合特征的车辆重识别算法[J]. 计算机工程, 2019, 45(6): 12-20. |
Li Xiying, Zhou Zhihao, Qiu Mingkai. Vehicle Re-identification Algorithm Based on Component Fusion Feature[J]. Computer Engineering, 2019, 45(6): 12-20. |
[1] | 刘延东, 黄高翔, 陈文. 基于增强心理行为异质性的改进社会力模型[J]. 系统仿真学报, 2023, 35(5): 1120-1130. |
[2] | 戴宇轩, 崔承刚. 基于深度强化学习的Boost变换器控制策略[J]. 系统仿真学报, 2023, 35(5): 1109-1119. |
[3] | 范雅倩, 于松源, 房方. 热电联产虚拟电厂两阶段分布鲁棒优化调度[J]. 系统仿真学报, 2023, 35(5): 1046-1058. |
[4] | 刘君阳, 朱世松. 基于DBN的飞行保障力量配置辅助决策方法[J]. 系统仿真学报, 2023, 35(5): 1008-1019. |
[5] | 付玉, 张垚, 赵萌, 王绵沼, 郑江鹏, 贾晨, 陈胜勇. 基于仿真数据迁移学习的固定翼无人机检测[J]. 系统仿真学报, 2023, 35(5): 998-1007. |
[6] | 张元, 韩浩宇, 韩燮, 付嘉旭. 基于改进的协方差矩阵描述子的点云配准方法[J]. 系统仿真学报, 2023, 35(5): 979-986. |
[7] | 付超, 王冬越, 李鑫鑫, 薛旻. 自动化生产线柔性制造过程优化决策仿真平台[J]. 系统仿真学报, 2023, 35(5): 920-935. |
[8] | 王向前, 郭璞昊, 孟祥瑞. 采选充一体化煤炭生产物流系统仿真及优化[J]. 系统仿真学报, 2023, 35(5): 907-919. |
[9] | 徐浩添, 秦龙, 曾俊杰, 胡越, 张琪. 基于深度强化学习的对手建模方法研究综述[J]. 系统仿真学报, 2023, 35(4): 671-694. |
[10] | 赵拓, 邓汉强, 高佳隆, 黄健. 基于网络节点聚类的多无人机动态目标分配[J]. 系统仿真学报, 2023, 35(4): 695-708. |
[11] | 陈威, 王艳, 纪志成. 离散制造系统能耗动态建模与在线预测[J]. 系统仿真学报, 2023, 35(4): 760-772. |
[12] | 杨伟凯, 王艳, 纪志成. 面向知识图谱的智能生产系统工艺知识推理方法[J]. 系统仿真学报, 2023, 35(4): 773-785. |
[13] | 石鼎, 燕雪峰, 宫丽娜, 张静宣, 关东海, 魏明强. 强化学习驱动的海战场多智能体协同作战仿真算法[J]. 系统仿真学报, 2023, 35(4): 786-796. |
[14] | 周勇樟, 王艳, 纪志成. 扰动下离散再制造系统瓶颈漂移波动性分析[J]. 系统仿真学报, 2023, 35(4): 809-821. |
[15] | 陈强, 王意, 李康顺. 双重需求响应的虚拟电厂建模与调度研究[J]. 系统仿真学报, 2023, 35(4): 822-832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||