系统仿真学报 ›› 2022, Vol. 34 ›› Issue (10): 2194-2203.doi: 10.16182/j.issn1004731x.joss.21-0456
收稿日期:
2021-05-21
修回日期:
2021-09-01
出版日期:
2022-10-30
发布日期:
2022-10-18
通讯作者:
刘晓涛
E-mail:958933601@qq.com;xtliu@xidian.edu.cn
作者简介:
李怡桐(1997-),女,蒙古族,硕士生,研究方向为时间序列数据挖掘、复杂网络系统认知、智能优化与学习。 E-mail:958933601@qq.com
基金资助:
Yitong Li1(), Xiaotao Liu1(
), Jing Liu1, Kai Wu2
Received:
2021-05-21
Revised:
2021-09-01
Online:
2022-10-30
Published:
2022-10-18
Contact:
Xiaotao Liu
E-mail:958933601@qq.com;xtliu@xidian.edu.cn
摘要:
为解决现有方法对较长、复杂度分布不均序列的错分类问题,提取序列复杂度的局部信息,提出了加权局部复杂度不变性距离(WLCID),包含复杂度局部表征和全局加权整合两个模型。利用滑窗分解序列,结合复杂度不变性距离表示方法提取局部复杂度信息;通过建立类表征模型,以类间距越大的子段对分类正确的贡献度越大为依据,通过归一化累积类间距来量化整合权重。与相似算法的对比实验表明:此方法不仅在复杂度分布不均的数据中表现突出,在大多数测试集也有较好的效果。在分类和聚类任务上精度的提升,说明方法在表示时间序列形态特征的复杂度信息上具有较好的能力。
中图分类号:
李怡桐, 刘晓涛, 刘静, 吴凯. 基于加权局部复杂不变性的时间序列分类算法[J]. 系统仿真学报, 2022, 34(10): 2194-2203.
Yitong Li, Xiaotao Liu, Jing Liu, Kai Wu. Weighted Local Complexity Invariance for Time Series Classification[J]. Journal of System Simulation, 2022, 34(10): 2194-2203.
表1
基于ED和不同复杂度不变性距离的分类结果 (%)
数据集 | ED | CID | WLCID |
---|---|---|---|
Chinatown | 94.20 | 94.49 | 97.39 |
BeetleFly | 75.00 | 70.00 | 80.00 |
BirdChicken | 55.00 | 65.00 | 85.00 |
FaceFour | 78.41 | 80.68 | 85.23 |
ECG200 | 88.00 | 89.00 | 89.00 |
Herring | 51.56 | 54.69 | 57.81 |
Sony1 | 69.55 | 81.53 | 82.70 |
DPOutlineCorrect | 71.74 | 71.38 | 74.28 |
Rock | 64.00 | 66.00 | 70.00 |
DSizeReduction | 93.46 | 93.46 | 94.12 |
Fish | 78.29 | 78.29 | 82.86 |
ECGFiveDays | 79.67 | 78.16 | 89.31 |
Trace | 76.00 | 86.00 | 83.00 |
MPTW | 51.30 | 50.00 | 51.30 |
OSULeaf | 52.07 | 56.20 | 58.26 |
表2
DTW和不同复杂度表示方式的分类结果 (%)
数据集 | DTW | CID | WLCID |
---|---|---|---|
Chinatown | 95.36 | 95.07 | 96.52 |
BeetleFly | 70.00 | 70.00 | 75.00 |
BirdChicken | 75.00 | 75.00 | 80.00 |
FaceFour | 84.09 | 87.50 | 90.91 |
ECG200 | 80.00 | 80.00 | 89.00 |
Herring | 54.69 | 54.69 | 57.81 |
Sony1 | 71.21 | 81.86 | 81.03 |
DPOutlineCorrect | 72.46 | 71.01 | 71.74 |
Rock | 58.00 | 46.00 | 70.00 |
DSizeReduction | 96.08 | 95.75 | 96.08 |
Fish | 86.29 | 85.71 | 76.00 |
ECGFiveDays | 77.47 | 78.98 | 84.20 |
Trace | 99.00 | 99.00 | 99.00 |
MPTW | 49.35 | 50.00 | 52.60 |
OSULeaf | 63.64 | 66.12 | 61.57 |
1 | Wang W, Shi Y, Luo R. Sparse Representation Based Approach to Prediction for Economic Time Series[J]. IEEE Access (S2169-3536), 2019, 7: 20614-20618. |
2 | Mehdiyev N, Lahann J, Emrich A, et al. Time Series Classification Using Deep Learning for Process Planning: A Case from the Process Industry[J]. Procedia Computer Science(S1877-0509), 2017, 114: 242-249. |
3 | Catley C, Stratti H, Mcgregor C. Multi-Dimensional Temporal Abstraction and Data Mining of Medical Time Series Data: Trends and Challenges[J]. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference (S1558-4615), 2017, 2008: 4322-4325. |
4 | Gasparrini A, Armstrong B, Kenward M G. Dlnm: Distributed Lag Non-Linear Models[J]. Statistics in Medicine (S1097-0258), 2017, 29(21): 2224-2234. |
5 | Shen F, Liu J, Wu K. Multivariate Time Series Forecasting Based on Elastic Net and High-Order Fuzzy Cognitive Maps: A Case Study on Human Action Prediction through EEG Signals[J]. IEEE Transactions on Fuzzy Systems (S1941-0034), 2020, 29(8): 2336-2348. |
6 | 刘文法, 王旭, 张建邦. 基于LS-SVM的装备需求时间序列预测[J]. 弹箭与制导学报, 2006, 26(1): 780-783. |
Liu Wenfa, Wang Xu, Zhang Jianbang. Time Series Prediction of Equipment Demand Based on LS-SVM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 780-783. | |
7 | Bagnall A, Lines J, Bostrom A, et al. The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[J]. Data Mining and Knowledge Discovery (S1384-5810), 2017, 31(3): 606-660. |
8 | Gong Z, Chen H, Yuan B, et al. Multiobjective Learning in the Model Space for Time Series Classification[J]. IEEE Transactions on Cybernetics (S2168-2275), 2019, 49(3): 918-932. |
9 | Fawaz H I, Forestier G, Weber J, et al. Deep Learning for Time Series Classification: A Review[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33(4): 917-963. |
10 | Abanda A, Mori U, Lozano J A. A Review on Distance Based Time Series Classification[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33: 378-412. |
11 | Górecki Tomasz, Łuczak Maciej. Using Derivatives in Time Series Classification[J]. Communications in Statistics: Simulation and Computation(S0361-0918), 2013, 26(2): 310-331. |
12 | Jeong Y S, Jeong M K, Omitaomu O A. Weighted Dynamic Time Warping for Time Series Classification[J]. Pattern Recognition (S0031-3203), 2011, 44(9): 2231-2240. |
13 | Kate, Rohit J. Using Dynamic Time Warping Distances as Features for Improved Time Series Classification[J]. Data Mining and Knowledge Discovery(S1384-5810), 2016, 30(2): 283-312. |
14 | Marteau, Pierre-François. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S1939-3539), 2008, 31(2): 306-318. |
15 | Stefan A, Athitsos V, Das G. The Move-Split-Merge Metric for Time Series[J]. IEEE Transactions on Knowledge and Data Engineering(S1041-4347), 2013, 25(6): 1425-1438. |
16 | Batista G, Keogh E J, Tataw O M, et al. CID: An Efficient Complexity-Invariant Distance for Time Series[J]. Data Mining and Knowledge Discovery (S1384-5810), 2014, 28(3): 634-669. |
17 | Amato F, Laib M, Guignard F, et al. Analysis of Air Pollution Time Series Using Complexity-Invariant Distance and Information Measures[J]. Physica A: Statistical Mechanics and its Applications(S0378-4371), 2020, 547: 124391. |
18 | Zhao X, Ji M, Zhang N, et al. Permutation Transition Entropy: Measuring the Dynamical Complexity of Financial Time Series[J]. Chaos Solitons & Fractals (S0960-0779), 2020, 139: 109962. |
19 | Biswal B, Biswal M, Hasan S, et al. Nonstationary Power Signal Time Series Data Classification Using LVQ Classifier[J]. Applied Soft Computing (S1568-4946), 2014, 18: 158-166. |
20 | Whelen T, Siqueira P. Time-Series Classification of Sentinel-1 Agricultural Data over North Dakota[J]. Remote Sensing Letters (S2150-704X), 2018, 9(5): 411-420. |
21 | Calegari G R, Carlino E, Peroni D, et al. Filtering and Windowing Mobile Traffic Time Series for Territorial Land Use Classification[J]. Computer Communications (S0140-3664), 2016, 95(1): 15-28. |
22 | Dau, Anh H, Bagnall A, et al. The UCR Time Series Archive[J]. IEEE/CAA Journal of Automatica Sinica (S2329-9266), 2019(6): 1293-1305. |
[1] | 刘渊, 薛新毅, 王晓锋. 基于云平台的Starlink星座高性能仿真技术研究[J]. 系统仿真学报, 2022, 34(10): 2221-2232. |
[2] | 邵绪强, 张浩伟, 冯小华. 面向电力变压器虚拟装配的多感官融合交互方法[J]. 系统仿真学报, 2022, 34(10): 2244-2254. |
[3] | 王海森, 范军芳. 一种微小型弹药的气动特性仿真研究[J]. 系统仿真学报, 2022, 34(10): 2272-2278. |
[4] | 张富震, 朱耀琴. 复杂环境中多无人机协同侦察的任务分配方法[J]. 系统仿真学报, 2022, 34(10): 2293-2302. |
[5] | 何必胜, 陈鹏, 张宏翔, 鲁工圆, 张春辉. 基于数字孪生的铁路客运站技术作业实时调度方法[J]. 系统仿真学报, 2022, 34(10): 2130-2141. |
[6] | 赵利强, 郭梦倩, 唐水雄, 唐金金. 基于有限理性约束的自适应人群疏散仿真模型[J]. 系统仿真学报, 2022, 34(10): 2162-2170. |
[7] | 徐佳乐, 张海东, 赵东海, 倪晚成. 基于卷积神经网络的陆战兵棋战术机动策略学习[J]. 系统仿真学报, 2022, 34(10): 2181-2193. |
[8] | 杨润青, 吴曦. 面向兵棋系统的卫星导航对抗行动推演模型研究[J]. 系统仿真学报, 2022, 34(10): 2213-2220. |
[9] | 郑文, 张喆, 朱静宜. 双平台市场排他性竞争仿真[J]. 系统仿真学报, 2022, 34(09): 2098-2106. |
[10] | 张立峰, 苗雨. 一种声学层析成像温度分布高分辨率重建方法[J]. 系统仿真学报, 2022, 34(09): 2065-2073. |
[11] | 盛俊杰, 唐兆, 董少迪, 吴舒扬, 梁浩. 铁道车辆动力学云平台架构设计及原型验证[J]. 系统仿真学报, 2022, 34(09): 2056-2064. |
[12] | 李成兵, 李云飞, 吴鹏. 考虑时间特性的城市群客运网络抗毁性研究[J]. 系统仿真学报, 2022, 34(09): 2037-2045. |
[13] | 朱依婷, 闫云, 何兆成. 公交与社会车辆混合的中观交通建模与仿真[J]. 系统仿真学报, 2022, 34(09): 2019-2027. |
[14] | 祁启明, 傅瑞罡, 王平, 汪敏, 范红旗. 面向小型航空器应用的光学复眼仿真软件设计[J]. 系统仿真学报, 2022, 34(09): 1999-2008. |
[15] | 张莉, 张惠珍, 刘冬, 陆雨欣. 考虑紧迫度的应急物资调度及粒子群算法求解[J]. 系统仿真学报, 2022, 34(09): 1988-1998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||