系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2778-2792.doi: 10.16182/j.issn1004731x.joss.24-0658
• 论文 • 上一篇
陈海洋, 吝红凯, 任智芳, 刘静, 张静
收稿日期:2024-06-21
修回日期:2024-09-01
出版日期:2025-11-18
发布日期:2025-11-27
通讯作者:
吝红凯
第一作者简介:陈海洋(1967-),男,副教授,博士,研究方向为贝叶斯网络。
基金资助:Chen Haiyang, Lin Hongkai, Ren Zhifang, Liu Jing, Zhang Jing
Received:2024-06-21
Revised:2024-09-01
Online:2025-11-18
Published:2025-11-27
Contact:
Lin Hongkai
摘要:
针对小样本数据集条件下采用单一专家先验知识可能存在不确定性导致BN参数学习精度不高问题,设计了一种基于AHP-DST融合专家先验知识的BN参数学习方法。利用层次分析法的思想结合证据理论合成规则计算出专家综合先验知识;将专家综合先验知识加入到正态分布中,与单调性约束相结合得到虚拟样本信息;将虚拟样本信息加入到贝叶斯估计中得到网络参数估计值。在不同样本量条件下进行仿真验证,结果表明:在样本数据较小时,所提方法的KL散度始终优于其他4种方法,运行时间则略高于其他两种方法,总体上,所提算法综合性能优于其他4种方法,更适用于样本数据量较小的情况。将所提方法应用于空中目标对海面舰艇的攻击意图识别中,仿真结果能够较好的反应实际情况,进一步验证了方法的有效性和可行性。
中图分类号:
陈海洋,吝红凯,任智芳等 . 基于AHP-DST融合专家先验知识的BN参数学习[J]. 系统仿真学报, 2025, 37(11): 2778-2792.
Chen Haiyang,Lin Hongkai,Ren Zhifang,et al . Bayesian Network Parameter Learning Based on AHP-DST Fusion of Expert Prior Knowledge[J]. Journal of System Simulation, 2025, 37(11): 2778-2792.
| [1] | Li Weinan, Zhang Weiguo, Liu Baoning, et al. The Situation Assessment of UAVs Based on an Improved Whale Optimization Bayesian Network Parameter-learning Algorithm[J]. Drones, 2023, 7(11): 655. |
| [2] | 张靖, 李卫红. 基于贝叶斯网络的无人机对地作战威胁评估[J]. 西北工业大学学报, 2023, 41(6): 1054-1063. |
| Zhang Jing, Li Weihong. Threat Assessment for Air-to-ground Combat of UAVs Using Improved Bayesian Networks[J]. Journal of Northwestern Polytechnical University, 2023, 41(6): 1054-1063. | |
| [3] | 李辉强, 王毅, 李丽亚. 基于动态贝叶斯网络的低慢小目标威胁评估[J]. 激光与红外, 2022, 52(7): 1036-1041. |
| Li Huiqiang, Wang Yi, Li Liya. LSS Target Threat Evaluation Based on Dynamic Bayesian Network[J]. Laser & Infrared, 2022, 52(7): 1036-1041. | |
| [4] | Zhang Dongliang, Wang Liufeng, Hong Qinqin, et al. Research on Fault Diagnosis of Steam Turbine Based on Bayesian Network[J]. Journal of Physics: Conference Series, 2021, 1754(1): 012136. |
| [5] | 乔殿峰, 梁彦, 马超雄, 等. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
| Qiao Dianfeng, Liang Yan, Ma Chaoxiong, et al. Recognition and Prediction of Group Target Intention in Multi-domain Operations[J]. Systems Engineering and Electronics, 2022, 44(11): 3403-3412. | |
| [6] | 陈军, 兀亚伟, 李垣志, 等. 基于动态贝叶斯网络的燃气管网燃爆风险分析[J]. 北京理工大学学报, 2021, 41(7): 696-705. |
| Chen Jun, Wu Yawei, Li Yuanzhi, et al. Risk Analysis of Burning and Explosion of Gas Pipeline Network Based on Dynamic Bayesian Network[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 696-705. | |
| [7] | 聂凯, 曾科军, 孟庆海. 基于深度贝叶斯网络学习的不确定性建模方法[J]. 系统仿真学报, 2022, 34(1): 79-85. |
| Nie Kai, Zeng Kejun, Meng Qinghai. Uncertainty Simulation Method Based on Deep Bayesian Networks Learning[J]. Journal of System Simulation, 2022, 34(1): 79-85. | |
| [8] | 丁华东, 许华虎, 段然, 等. 基于贝叶斯方法的网络安全态势感知模型[J]. 计算机工程, 2020, 46(6): 130-135. |
| Ding Huadong, Xu Huahu, Duan Ran, et al. Network Security Situation Awareness Model Based on Bayesian Method[J]. Computer Engineering, 2020, 46(6): 130-135. | |
| [9] | Du Yiping. Introducing the Visual Imaging Feature to the Text Analysis: High Efficient Soft Computing Models with Bayesian Network[J]. Neural Processing Letters, 2021, 53(4): 2403-2419. |
| [10] | Pirbhulal Sandeep, Gkioulos Vasileios, Katsikas Sokratis. Towards Integration of Security and Safety Measures for Critical Infrastructures Based on Bayesian Networks and Graph Theory: A Systematic Literature Review[J]. Signals, 2021, 2(4): 771-802. |
| [11] | Hou Yongyan, Yang Ao, Guo Wenqiang, et al. Bearing Fault Diagnosis Under Small Data Set Condition: A Bayesian Network Method with Transfer Learning for Parameter Estimation[J]. IEEE Access, 2022, 10: 35768-35783. |
| [12] | 邸若海, 李叶, 万开方, 等. 基于改进QMAP的贝叶斯网络参数学习算法[J]. 西北工业大学学报, 2021, 39(6): 1356-1367. |
| Di Ruohai, Li Ye, Wan Kaifang, et al. Bayesian Network Parameter Learning Algorithm Based on Improved QMAP[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1356-1367. | |
| [13] | 任智芳, 陈海洋, 环晓敏, 等. 小数据集下基于修正乘性协同约束的BN参数学习[J]. 空军工程大学学报, 2023, 24(4): 69-76. |
| Ren Zhifang, Chen Haiyang, Huan Xiaomin, et al. BN Parameter Learning Based on Modified Multiplicative Collaborative Constraints with Small Data Sets[J]. Journal of Air Force Engineering University, 2023, 24(4): 69-76. | |
| [14] | 柴慧敏, 赵昀瑶, 方敏. 利用先验正态分布的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2018, 40(10): 2370-2375. |
| Chai Huimin, Zhao Yunyao, Fang Min. Learning Bayesian Networks Parameters by Prior Knowledge of Normal Distribution[J]. Systems Engineering and Electronics, 2018, 40(10): 2370-2375. | |
| [15] | Wu Qu, Peng Xingjie, Yu Yingrui, et al. Bayesian Inference of Multi-group Nuclear Data by Monte Carlo Sampling Method[J]. Annals of Nuclear Energy, 2021, 161(6): 1084-1095. |
| [16] | Yao Tiansheng, Arthur Choi, Adnan Darwiche, et al. Learning Bayesian Network Parameters Under Equivalence Constraints[J]. Artificial Intelligence, 2017, 244(5): 239-257. |
| [17] | 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652. |
| Zeng Qiang, Huang Zheng, Wei Shuhuan. Bayesian Network Parameter Learning Method Based on Expert Priori Knowledge and Monotonic Constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652. | |
| [18] | 鹿浩, 张鸿洲, 钟寒, 等. 融合专家综合知识的贝叶斯网络参数学习方法[J]. 科学技术与工程, 2021, 21(21): 8944-8950. |
| Lu Hao, Zhang Hongzhou, Zhong Han, et al. Bayesian Network Parameter Learning Method Integrating Comprehensive Knowledge of Experts[J]. Science Technology and Engineering, 2021, 21(21): 8944-8950. | |
| [19] | Liu Yan, Eckert C M, Earl C. A Review of Fuzzy AHP Methods for Decision-making with Subjective Judgements[J]. Expert Systems with Applications, 2020, 161: 113738. |
| [20] | Li Shuangming, Guan Xin, Yi Xiao, et al. Combination for Conflicting Interval-valued Belief Structures with CSUI-DST Method[J]. Chinese Journal of Electronics, 2022, 31(5): 980-990. |
| [21] | 茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45(2): 444-452. |
| Ru Xinxin, Gao Xiaoguang, Wang Yangyang. Bayesian Network Parameter Learning Based on Fuzzy Constraints[J]. Systems Engineering and Electronics, 2023, 45(2): 444-452. | |
| [22] | Şahin Büşra, Atıf Ahmet Evren, Tuna Elif, et al. Parameter Estimation of the Dirichlet Distribution Based on Entropy[J]. Axioms, 2023, 12(10): 947. |
| [23] | 孟光磊, 丛泽林, 宋彬, 等. 贝叶斯网络结构学习综述[J]. 北京航空航天大学学报, 2025, 51(9): 2829-2849. |
| Meng Guanglei, Cong Zelin, Song Bin, et al. A Review of Bayesian Network Structure Learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(9): 2829-2849. | |
| [24] | Henry Ogbemudia Omoregbee, Stephan Heyns P. Fault Detection in Roller Bearing Operating at Low Speed and Varying Loads Using Bayesian Robust New Hidden Markov Model[J]. Journal of Mechanical Science and Technology, 2018, 32(9): 4025-4036. |
| [1] | 张笑妍, 李革, 王鹏. 基于随机有限集的CGF机动状态实时生成方法研究[J]. 系统仿真学报, 2025, 37(9): 2211-2224. |
| [2] | 润雨瑄, 杨德真, 刘烨炀, 邓伟, 邢翔宇, 任羿. 基于探测参数的海上目标识别场景生成方法[J]. 系统仿真学报, 2025, 37(8): 1951-1964. |
| [3] | 杨春雨, 张闯, 张晓凡. 基于模糊奖惩机制证据理论的船舶火灾预测方法[J]. 系统仿真学报, 2025, 37(8): 2152-2162. |
| [4] | 胡宏宇, 郜天柱, 谷海涛. 基于MLP的海上无人跨域协同效能评估系统的设计与实现[J]. 系统仿真学报, 2024, 36(11): 2542-2551. |
| [5] | 龚建兴, 王子沐, 杨奇龙. 基于粒子群算法的训练仿真想定优化生成方法[J]. 系统仿真学报, 2023, 35(9): 1860-1870. |
| [6] | 刘君阳, 朱世松. 基于DBN的飞行保障力量配置辅助决策方法[J]. 系统仿真学报, 2023, 35(5): 1008-1019. |
| [7] | 张高峰, 吴亮. 复杂电磁环境下水面舰艇防空反导作战效能评估[J]. 系统仿真学报, 2022, 34(3): 640-650. |
| [8] | 聂凯, 曾科军, 孟庆海. 基于深度贝叶斯网络学习的不确定性建模方法[J]. 系统仿真学报, 2022, 34(1): 79-85. |
| [9] | 罗樟圳, 江海凡, 付建林, 丁国富. 基于组合赋权的离散车间生产计划综合评价[J]. 系统仿真学报, 2021, 33(8): 1856-1865. |
| [10] | 高昂, 董志明, 张国辉, 梁涛, 郭齐胜. LVC训练系统中计算机生成兵力生成技术研究[J]. 系统仿真学报, 2021, 33(3): 745-752. |
| [11] | 高昂, 王晓路, 董志明, 张国辉. 装甲兵虚拟兵力战术对抗动作参数矫正方法[J]. 系统仿真学报, 2021, 33(2): 484-493. |
| [12] | 邵璐璐, 韩继红, 牛侃, 刘小虎, 邵芳. 基于加权证据理论的故障模式分析方法研究[J]. 系统仿真学报, 2020, 32(5): 782-791. |
| [13] | 张云景, 王鑫鑫, 王洋, 汤光明. 一种基于证据理论的战时备件需求预测方法[J]. 系统仿真学报, 2020, 32(2): 314-322. |
| [14] | 陈海洋, 柴冰, 王瑞兰, 曹璐. 基于时间窗的SVDBN近似推理算法研究[J]. 系统仿真学报, 2020, 32(2): 217-228. |
| [15] | 肖艳军, 杨欢, 康炎平. 锂电池极片涂布机NMP回收系统的红外辐射研究[J]. 系统仿真学报, 2020, 32(1): 96-104. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||