系统仿真学报 ›› 2025, Vol. 37 ›› Issue (1): 220-233.doi: 10.16182/j.issn1004731x.joss.23-1009
• 论文 • 上一篇
徐胜军1,2, 张梦倩1,2, 詹博涵3, 刘光辉1,2, 孟月波1,2
收稿日期:
2023-08-15
修回日期:
2023-10-29
出版日期:
2025-01-20
发布日期:
2025-01-23
通讯作者:
张梦倩
第一作者简介:
徐胜军(1976-),男,副教授,博士,研究方向为人工智能与智动化系统、模式识别。
基金资助:
Xu Shengjun1,2, Zhang Mengqian1,2, Zhan Bohan3, Liu Guanghui1,2, Meng Yuebo1,2
Received:
2023-08-15
Revised:
2023-10-29
Online:
2025-01-20
Published:
2025-01-23
Contact:
Zhang Mengqian
摘要:
针对跨镜头多视角差异导致车辆重识别面临的不同视角、复杂背景和光照强度等干扰问题,提出了一种融合全局选择与局部区分的车辆重识别网络。基于Resnet50骨干网络,设计了融合全局特征与局部特征的三分支互补网络,利用全局分支学习车辆的整体外观信息,局部分支捕获车辆的差异性细节信息。基于注意力机制提出了上下文特征选择模块(context feature selection module, CFSM),有效分离了车辆信息与复杂背景信息,并提出了一种细节特征增强模块(detail feature enhancement module,DFEM),利用部件之间的相对位置信息强化多粒度特征细节信息的学习。提出了一种权值自适应平衡策略,联合多损失函数进行训练。实验结果表明,所提网络在VeRi-776数据集上的mAP、CMC@1和CMC@5分别达到73.2%、93.4%和97.3%;在VehicleID数据集的大规模测试子集上,CMC@1和CMC@5分别达到75.0%和92.7%。与对比网络相比,所提网络具有较高的识别率和鲁棒性。
中图分类号:
徐胜军,张梦倩,詹博涵等 . 融合全局选择与局部区分的车辆重识别网络[J]. 系统仿真学报, 2025, 37(1): 220-233.
Xu Shengjun,Zhang Mengqian,Zhan Bohan,et al . Global Selection and Local Differentiation Fusion for Vehicle Re-identification[J]. Journal of System Simulation, 2025, 37(1): 220-233.
表6
在VehicleID数据集上的实验对比
Method(w/o Re-Rank) | Test800 | Test1600 | Test2400 | |||
---|---|---|---|---|---|---|
CMC@1 | CMC@5 | CMC@1 | CMC@5 | CMC@1 | CMC@5 | |
C2F-Rank | 61.1 | 81.7 | 56.2 | 76.2 | 51.4 | 72.2 |
RAM | 75.2 | 91.5 | 72.3 | 87.0 | 67.7 | 84.5 |
AAVER | 74.7 | 93.8 | 68.6 | 90.0 | 63.5 | 85.6 |
PRN | 78.4 | 92.3 | 75.0 | 88.3 | 74.2 | 86.4 |
MSA | 77.6 | 90.5 | 74.4 | 86.3 | 72.9 | 84.6 |
URRNet | 76.5 | 96.5 | 73.7 | 92.0 | 68.2 | 89.6 |
DSAM | 80.6 | 94.8 | 78.2 | 92.6 | 75.0 | 89.2 |
GRMF | 81.5 | 96.3 | 76.8 | 93.6 | 72.8 | 91.0 |
GSLD (ours) | 82.6 | 97.8 | 77.5 | 94.8 | 75.0 | 92.7 |
1 | Bai Yan, Gao Feng, Lou Yihang, et al. Incorporating Intra-class Variance to Fine-grained Visual Recognition[C]//2017 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2017: 1452-1457. |
2 | Jin Yi, Li Chenning, Li Yidong, et al. Model Latent Views with Multi-center Metric Learning for Vehicle Re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1919-1931. |
3 | 罗慧诚, 汪淑娟. 基于特征鲁棒性增强的多摄像头下车辆识别方法[J]. 系统仿真学报, 2023, 35(5): 1059-1074. |
Luo Huicheng, Wang Shujuan. Multi-camera Vehicle Recognition Method Based on Feature Robustness Enhancement[J]. Journal of System Simulation, 2023, 35(5): 1059-1074. | |
4 | Wu Minghu, Qian Yeqiang, Wang Chunxiang, et al. A Multi-camera Vehicle Tracking System Based on City-scale Vehicle Re-ID and Spatial-temporal Information[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2021: 4072-4081. |
5 | Watcharapinchai Nattachai, Rujikietgumjorn Sitapa. Approximate License Plate String Matching for Vehicle Re-identification[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE, 2017: 1-6. |
6 | Khorramshahi P, Kumar A, Peri N, et al. A Dual-path Model with Adaptive Attention for Vehicle Re-identification[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 6131-6140. |
7 | Tang Lisha, Wang Yi, Chau L P. Weakly-supervised Part-attention and Mentored Networks for Vehicle Re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8887-8898. |
8 | Sun Wei, Dai Guangzhao, Zhang Xiaorui, et al. TBE-net: A Three-branch Embedding Network with Part-aware Ability and Feature Complementary Learning for Vehicle Re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14557-14569. |
9 | Xu Yan, Rong Leilei, Zhou Xiaolei, et al. Joint Multiple Fine-grained feature for Vehicle Re-identification[J]. Array, 2022, 14: 100152. |
10 | Tu Mingfei, Zhu Kuan, Guo Haiyun, et al. Multi-granularity Mutual Learning Network for Object Re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15178-15189. |
11 | Sun Ziruo, Nie Xiushan, Bi Xiaopeng, et al. Detail Enhancement-based Vehicle Re-identification with Orientation-guided Re-ranking[J]. Pattern Recognition, 2023, 137: 109304. |
12 | Jiang Gangwu, Pang Xiyu, Tian Xin, et al. Global Reference Attention Network for Vehicle Re-identification[J]. Applied Intelligence, 2023, 53(9): 11328-11343. |
13 | Zheng Yanli, Pang Xiyu, Jiang Gangwu, et al. Dual-relational Attention Network for Vehicle Re-identification[J]. Applied Intelligence, 2023, 53(7): 7776-7787. |
14 | Tian Xin, Pang Xiyu, Jiang Gangwu, et al. Vehicle Re-identification Based on Global Relational Attention and Multi-granularity Feature Learning[J]. IEEE Access, 2022, 10: 17674-17682. |
15 | He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778. |
16 | Zhu Wenqian, Wang Zhongyuan, Wang Xiaochen, et al. A Dual Self-attention Mechanism for Vehicle Re-identification[J]. Pattern Recognition, 2023, 137: 109258. |
17 | Zhang Zhizheng, Lan Cuiling, Zeng Wenjun, et al. Relation-aware Global Attention for Person Re-identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 3183-3192. |
18 | Hermans Alexander, Beyer Lucas, Leibe Bastian. In Defense of the Triplet Loss for Person Re-identification[EB/OL]. (2017-11-21) [2023-07-16]. . |
19 | Su V Huynh, Nguyen Nam H, Nguyen Ngoc T, et al. A Strong Baseline for Vehicle Re-identification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2021: 4142-4149. |
20 | Liu Xinchen, Liu Wu, Mei Tao, et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-scale Urban Surveillance[J]. IEEE Transactions on Multimedia, 2018, 20(3): 645-658. |
21 | Liu Hongye, Tian Yonghong, Wang Yaowei, et al. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 2167-2175. |
22 | Kingma Diederik P, Ba Lei. Adam: A Method for Stochastic Optimization[EB/OL]. (2017-01-30) [2023-07-16]. . |
23 | Zhong Zhun, Zheng Liang, Cao Donglin, et al. Re-ranking Person Re-identification with K-reciprocal Encoding[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 3652-3661. |
24 | Lou Yihang, Bai Yan, Liu Jun, et al. Embedding Adversarial Learning for Vehicle Re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3794-3807. |
25 | Liu Xiaobin, Zhang Shiliang, Huang Qingming, et al. RAM: A Region-aware Deep Model for Vehicle Re-identification[C]//2018 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2018: 1-6. |
26 | Kanacı Aytaç, Li Minxian, Gong Shaogang, et al. Multi-task Mutual Learning for Vehicle Re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Piscataway: IEEE, 2019: 62-70. |
27 | Chu Ruihang, Sun Yifan, Li Yadong, et al. Vehicle Re-identification with Viewpoint-aware Metric Learning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 8281-8290. |
28 | Kuma R, Weill E, Aghdasi F, et al. Vehicle Re-identification: An Efficient Baseline Using Triplet Embedding[C]//2019 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2019: 1-9. |
29 | Teng Shangzhi, Zhang Shiliang, Huang Qingming, et al. Viewpoint and Scale Consistency Reinforcement for UAV Vehicle Re-identification[J]. International Journal of Computer Vision, 2021, 129(3): 719-735. |
30 | Yao Aihuan, Huang Mengmeng, Qi Jiahao, et al. Attention Mask-based Network with Simple Color Annotation for UAV Vehicle Re-identification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
31 | Guo Haiyun, Zhao Chaoyang, Liu Zhiwei, et al. Learning Coarse-to-fine Structured Feature Embedding for Vehicle Re-identification[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 6853-6860. |
32 | He Bing, Li Jia, Zhao Yifan, et al. Part-regularized Near-duplicate Vehicle Re-identification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 3992-4000. |
33 | Qian Jiuchao, Pan Minting, Tong Wei, et al. URRNet: A Unified Relational Reasoning Network for Vehicle Re-identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11156-11168. |
[1] | 姬鹏, 赵金鹏, 姜利民. 面向自动驾驶汽车的新型转向系统设计及仿真分析[J]. 系统仿真学报, 2025, 37(1): 211-219. |
[2] | 巫庆辉, 鲍亚庆, 赵忠鑫, 黄旭, 魏宇晨. 矿井排水监控数字孪生系统研究与实现[J]. 系统仿真学报, 2025, 37(1): 199-210. |
[3] | 张曦阳, 林旭升, 周瑞, 胡毅. 数控系统数字孪生体系结构及应用研究[J]. 系统仿真学报, 2025, 37(1): 183-198. |
[4] | 王科, 官思佳, 殷希彦, 李西兴, 唐红涛. 基于混合遗传禁忌搜索算法的混流装配线平衡优化研究[J]. 系统仿真学报, 2025, 37(1): 167-182. |
[5] | 童亮, 杨婕, 甘旭升, 沈堤, 杨文达, 陈达雄. 基于改进混沌蚁群算法的多机冲突解脱仿真研究[J]. 系统仿真学报, 2025, 37(1): 155-166. |
[6] | 王子宁, 罗诗江, 陈维亚, 骆汉宾. 沉浸式钢架雪车滑行仿真系统研究与实现[J]. 系统仿真学报, 2025, 37(1): 145-154. |
[7] | 王晓锋, 张怡, 张国秀. 面向低轨卫星互联网的效能评估技术[J]. 系统仿真学报, 2025, 37(1): 119-133. |
[8] | 张伦, 杨妹, 赵拓, 张水库, 黄健. 对抗条件下的无人集群目标重分配方法研究[J]. 系统仿真学报, 2025, 37(1): 1-12. |
[9] | 杨妹, 王秉坤, 张中杰, 曾焱, 黄健. 一种不确定性动态环境下的威胁评估方法[J]. 系统仿真学报, 2024, 36(12): 2741-2754. |
[10] | 贾东梨, 刘科研, 任昭颖, 汪泽州, 汤东升. 计及能源优先级的综合能源系统优化运行调度[J]. 系统仿真学报, 2024, 36(12): 2771-2781. |
[11] | 周雅琼, 陈俊琪, 李惟时, 邱思航, 鞠儒生. 基于聚类的疫情物资投放点选址方法研究[J]. 系统仿真学报, 2024, 36(12): 2782-2796. |
[12] | 邓海欣, 张凤全, 王楠, 张万才, 雷劼睿. 基于潜在空间的动漫人脸风格迁移与编辑方法[J]. 系统仿真学报, 2024, 36(12): 2834-2849. |
[13] | 童文聪, 滕靖, 李君羡, 姚幸, 张中杰. 基于路侧标识的有轨电车交叉口制动引导方法[J]. 系统仿真学报, 2024, 36(12): 2926-2936. |
[14] | 缪天越, 王璐, 何家孝, 谢能刚. 融合强化学习的工业机器人数字孪生仿真方法研究[J]. 系统仿真学报, 2024, 36(12): 2971-2983. |
[15] | 伍云鹏, 付应雄, 沈丽君, 崔峰. 基于YOLOX-Tiny的长尾分布交通标志识别模型[J]. 系统仿真学报, 2024, 36(11): 2503-2516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||